Chapter 3

Oscillations

In this chapter we will discuss oscillatory motion. The simplest examples of such
motion are a swinging pendulum and a mass attached to the end of a spring, but
it is possible to make the system more complicated by introducing a damping force
and/or an external driving force. We will study all of these cases.

We are interested in oscillatory motion for two reasons. First, we study it because
we can study it. This is one of the few systems in physics where we can solve for
the motion completely. (There’s nothing wrong with looking under the lamppost
every now and then.) Second, such systems are ubiquitous in physics, for reasons
that will become clear in Section 4.2. If there was ever a type of physical system
worthy of study, this is it.

We’ll jump right into some math at the beginning of this chapter. Then we’ll
show how the math is applied to the physics.

3.1 Linear differential equations

A linear differential equation is one in which x and its time derivatives enter only
through their first powers. An example is 3d*z/dt* + 7dxz/dt + z = 0. If the right-
hand side of the equation is zero, then we use the term homogeneous differential
equation. If the right-hand side is some function of ¢ (as in the case of 3% — 44 =
9t2 — 5), then we use the term inhomogeneous differential equation. The goal of
this chapter is to learn how to solve these types of equations. Linear differential
equations come up again and again in physics, so we had better find a systematic
method of solving them.

The techniques that we will need are best learned through examples, so let’s
solve a few differential equations, starting with some simple ones. Throughout this
chapter, z will be understood to be a function of ¢. Hence, a dot will denote time
differentiation.

Example 1 (z = az):  This is a very simple differential equation. There are (at
least) two ways to solve it.
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First method: Separate variables to obtain dx/z = adt, and then integrate to
obtain Inx = at + ¢. Exponentiate to obtain

T = Ae™, (3.1)
where A = e is a constant factor. A is determined by the value of z at, say, ¢t = 0.

Second method: A better method is to just look at £ = ax and realize that
x = Ae® solves it. This may seem a bit silly. And in addition to being cheap, it is
also rather restrictive. But as we will see below, guessing these exponential functions
(or sums of them) is actually the most general thing we can try, so the method is
indeed quite general.

REMARK: Using this method, you may be concerned that although you have found one
solution to the equation, you might have missed another one. But the general theory of
differential equations says that a first-order linear equation has only one independent solution
(we’ll just accept this fact here). So if you find one solution, you know that you’ve found
the whole thing. &

Example 2 (Z = az):  If a is negative, then this equation describes the oscillatory
motion of, say, a spring (about which we’ll have much more to say later). If a is
positive, then it describes exponentially growing or decaying motion. There are (at
least) three ways to solve this equation.

First method: You can use the method of Section 2.3 here, because our system
is one where the force depends on only the position z. But this method is rather
cumbersome. It will certainly work, but in the case where our equation is a linear
function of z, there are much simpler methods.

Second method: A better method is to look at the equation and just write down
the answer. (Again, this may seem cheap. But the fact of the matter is that most of
the equations you’ll see look basically the same, so you might as well keep using this
cheap method if it keeps working.) The cases a > 0 and a < 0 are slightly different,
so let’s write the equation as

# = +w’r, (3.2)

where w is a real number (which we assume to be positive.)

In the case of the minus sign, we simply note that any multiple of coswt, sinwt,
et or e~ golves the equation. So the general solution may be written in various
equivalent forms:

z(t) = Acoswt+ Bsinuwt,

z(t) = Ccos(wt+ ¢1),

z(t) = Dsin(wt+ @),

z(t) = Ee“!4 Fe ! (3.3)

The various constants are related to each other; for example, A = C' cos ¢, and B =
—C'sin ¢;. Note that there are two free parameters in each of the above expressions
for z(t). These parameters are determined by the initial conditions (say, the position
and speed at t = 0). Depending on the specifics of a given problem, one of the above
forms will work better than the others.
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In the case of the plus sign in eq. (3.2), we simply note that any multiple of cosh wt,
sinhwt, e“t, or e ! solves the equation. So the general solution may be written in
various equivalent forms:

z(t) = Acoshwt+ Bsinhwt,

z(t) = Ccosh(wt+ ¢1),

z(t) = Dsinh(wt+ ¢9),

z(t) = Ee“'+ Fe ' (3.4)

(If you’re unfamiliar with the hyperbolic trig functions, a few facts are listed in Ap-
pendix A.)

Again, the general theory of differential equations says that our second-order linear
equation has only two independent solutions. Therefore, having found two solutions,
we know we’ve found them all.

There was actually no need to separate the +w? cases. Written as & = ax, the general
solution is z(t) = Acosh/at + Bsinh+/at. If a happens to be negative, then +/a is
imaginary (call it ia). Hence, the hyperbolic trig functions turn into ordinary trig
functions, because coshia = cosa, and sinhia = isina.

VERY IMPORTANT REMARK: The fact that the sum of two different solutions is again
a solution to our equation (a fact that we used in writing, for example, eq. (3.3)) is a
monumentally important property of linear differential equations. This property does not
hold for nonlinear differential equations, e.g. #> = x, because in this case squaring after
adding two solutions produces a cross-term which destroys the equality.

This property is called the principle of superposition. That is, superimposing two solutions
yields another solution. This quality makes theories in physics that are governed by linear
equations much easier to deal with than ones that are governed by nonlinear ones. General
Relativity, for example, is permeated by nonlinear equations, and solutions to most General
Relativity systems are extremely difficult to come by.

For equations with one main condition
(Those linear), we give you permission
To take your solutions,

With firm resolutions,

And add them in superposition. &

Third method:  The third method is the most general, and it is the one we will
use repeatedly in this chapter. The procedure (for a homogeneous equation) is to
guess a solution of the form z(t) = Ae®!, and then find out what o must be. (You
can’t solve for A because it cancels out of the equation, since the equation is linear in
x and homogeneous. A is determined by the initial conditions.) Plugging Ae*! into
i = az gives a = £4/a. We have therefore found two solutions. The most general
solution is an arbitrary linear combination of these,

z(t) = AeVe! + Be~ Vet (3.5)

A and B are determined by the initial conditions.

Of course, you could just look at # = az and write down the solution in eq. (3.5)
(this is simply the second method above). But the method of trying a solution of the
form z(t) = Ae®® will be needed in cases where the solution is not so obvious.
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REMARK: If a is negative (in which case let’s define @ = —w?, where w is a real number),
then the solution looks like z(t) = Ae™? + Be™™*. Using e’ = cosf# + isin 6, this can be
written in terms of trig functions, if desired (see eq. (3.3)).

If a is positive (in which case let’s define a = w?, where w is a real number), then the solution
looks like z(t) = Ae“! + Be™“!. Using e’ = cosh 6 + sinh 6, this can be written in terms of
hyperbolic trig functions, if desired (see eq. (3.4)).

Although the solution in eq. (3.5) is completely correct for both signs of a, it is generally more
illuminating to write the negative-a solutions in either the trig form or the e*** exponential

form where the 4’s are explicit. &

The usefulness of this third method cannot be overemphasized. It may seem some-
what restrictive, but it works. The examples in the remainder of this chapter should
convince you of this.

This is our method, essential,

For equations we solve, differential.
It gets the job done,

And it’s even quite fun.

We just try a routine exponential.

Example 3 (£+2vZ+az =0):  This will be our last mathematical example, then
we’ll get into some physics. As we will see later, this example pertains to a damped
harmonic oscillator. We have put a factor of 2 in the coefficient of & in order to make
some later formulas look nicer.

Note that the force in this example, which is —2v& — az (times m), depends on both
v and z, so our methods of Section 2.3 don’t apply. This leaves us with either the
method of clever guessing or the method of trying Ae®t. We’re probably not going to
guess this one, so let’s apply our lovely method trying Ae®?.
Plugging Ae®! into the given equation, and canceling the nonzero factor of Ae®?,
yields

a®+2va+a=0. (3.6)

vtV —a. (3.7

Call these a; and ay. Then the general solution to our equation is

The solutions for « are

z(t) = Ae™' 4 Be2?
_ o (40T 4 e 69
(Hmmm, our method of trying Ae®! doesn’t look so trivial anymore . . . )

If 42 —a < 0, then we can write our answer in terms of sines and cosines, and we have
oscillatory motion which decreases in time due to the e~7! factor (or it increases, if
v < 0, but this is rarely physical). If 42 — a > 0, then we have exponential motion.

In general, if we have a linear differential equation of the type

d"z d" g dr
—+Cn_1—+"'+01—

= o 7 + coz =0, (3.9)
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then the strategy is to simply plug in z(t) = Ae® and (in theory) solve the resulting
nth order equation (namely o” + ¢, 10" '+ -+ + cia+ ¢y = 0), for o, to obtain
the solutions a1, ..., an. The general solution for z(t¢) is then

z(t) = Ae®t 4 Age®t ... 4 A, et (3.10)

where the A; are determined by the initial conditions. In practice, however, we will
rarely encounter differential equations of degree higher than 2. (Note: if some of the
a; happen to be equal, then (3.10) is not valid. We will encounter such a situation
in Section 3.2.2.)

3.2 Oscillatory motion

3.2.1 Simple harmonic motion "
Let’s now do some real live physical problems. We’ll start with simple harmonic w-lm
motion. This is the motion undergone by a particle subject to a force F(z) = —kzx.

The classic system that undergoes simple harmonic motion is a mass attached Figure 3.1

to a spring (see Fig. 3.1). A typical spring has a force of the form F(z) = —kz,

where z is the displacement from equilibrium. (This holds as long as the spring isn’t

stretched too far; eventually this expression breaks down for any real spring.)
Hence, F' = ma gives —kxz = mz, or

k
i+ w’z =0, where w=4/—. (3.11)
m

From Example 2 in the previous section, the solution to this may be written as in
eq. (3.3),
z(t) = C cos(wt + ¢). (3.12)

The system therefore oscillates back and forth forever in time.
REMARK: The constants C' and ¢ are determined by the initial conditions. If, for
example, (0) = 0 and #(0) = v, then we must have 0 = C cos ¢ and v = —Cw sin ¢. Hence,

¢ =7/2,and C = —v/w. Therefore, the solution is z(t) = —(v/w) cos(wt+m/2). This looks
a little nicer as z(t) = (v/w) sin(wt). &

Example (Simple pendulum):  Another classic system that undergoes (approx-
imate) simple harmonic motion is the simple pendulum, that is, a mass that hangs
on a massless string and swings in a vertical plane.

Let £ be the length of the string. Let 8 be the angle the string makes with the vertical

(see Fig. 3.2). Then the gravitational force on the mass in the tangential direction is
—mgsinf. So F' = ma in the tangential direction gives

m

N Figure 3.2
—mgsin § = m(£0) (3.13)

(The tension in the string exactly cancels the radial component of gravity, so the
radial F = ma gives us no relevant information.) We will now enter the realm of
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approximations and assume that the amplitude of the oscillations is small. This
allows us to write sinf = 6, which gives

0 + w6 =0, where w = % . (3.14)
Therefore,

0(t) = C cos(wt + ¢). (3.15)

The true motion is arbitrarily close to this, for sufficiently small amplitudes. Exercise
1 deals with the higher-order corrections to the motion in the case where the amplitude
is not tiny.

3.2.2 Damped harmonic motion

Consider a mass m attached to the end of a spring which has a spring constant k.

Let the mass be subject to a drag force proportional to its velocity, Fy = —bv (see
Fig. 3.3). What is the position as a function of time?
The force on the mass is F' = —bz — kxz. So F = m gives
&+ 2yi 4+ w?z = 0, (3.16)

where 2y = b/m, and w = /k/m. But this is exactly the equation we solved in
Example 3 in the previous section. Now, however, we have the restrictions v > 0,
and w? > 0. Letting Q2 = 72 — w?, for simplicity, we may write the solution in eq.
(3.8) as

z(t) =e " (Aem + Be_m) ) where Q2 =42 — W% (3.17)

There are three cases to consider.

Case 1: Underdamping (92 < 0)

In this case, w > 7. Since Q is imaginary, let us define Q = iw (so @ =

vw? —«?) We then have
z(t) = e (Aei‘:’t + Be_i‘:’t)
= e ""Ccos(@t + ¢). (3.18)

These two forms are equivalent. Depending on the circumstances of the prob-
lem, one form works better than the other. (Or perhaps one of the other
forms in eq. (3.3) will be the most useful one, to be multiplied by the et
factor.) The constants are related by A+ B = Ccos ¢ and A — B = i(C'sin ¢.
In a physical problem, z(t) is real, so we must have A* = B (where the star
denotes complex conjugation). The two constants A and B, or C and ¢, are
determined by the initial conditions.
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The cosine form makes it apparent that the motion is harmonic motion whose
amplitude decreases in time because of the e 7 factor. A plot of such motion
is shown in Fig. 3.4. Note that the frequency of the motion, @ = /w? — 72,
is less than the natural frequency, w, of the undamped oscillator.

REMARK: If v is very small, then @ = w, which makes sense, because we almost have
an undamped oscillator. If v is very close to w, then © = 0. So the oscillations are
very slow. Of course, for very small @ it’s hard to even tell that the oscillations exist,
since they will damp out on a time scale of order 1/+, which will be short compared
to the time scale of the oscillations, 1/&. &

Case 2: Overdamping (22 > 0)

In this case, w < .  is real (and taken to be positive), so we have
z(t) = Ae” ("Dt 4 Be=(r+ D, (3.19)

There is no oscillatory motion in this case (see Fig. 3.5). Note that v > Q =
V7% — w?, so both of the exponents are negative. The motion therefore goes
to zero for large ¢. (This had better be the case. A real spring is not going
to have the motion go off to infinity. If we had obtained a positive exponent
somehow, we’d know we had made a mistake.)

REMARK: If v is just slightly larger than w, then Q & 0, so the two terms in (3.19) are
roughly equal, and we essentially have exponential decay, according to e~ 7%, If v > w
(that is, strong damping), then Q = =, so the first term in (3.19) dominates, and
we essentially have exponential decay according to e~(7=**. We can be somewhat
quantitative about this by approximating 2 by = /72 —w? = yy/1 —w?/9? ~
v(1 — w?/24%). Therefore, the exponential behavior goes like e=+"t/27. This is slow
decay (that it, slow compared to t ~ 1/w), which makes sense if the damping is very
strong. &

Case 3: Critical damping (Q? = 0)

In this case, v = w. Eq. (3.16) therefore becomes & + 2vi + 7%z = 0. In
this special case, we have to be careful in solving our differential equation.
The solution in eq. (3.17) is not valid, because in the procedure leading to
eq. (3.8), the roots a; and a9 are equal (to —y). (So we have really found
only one solution, e 7%.) We’ll just invoke here the result from the theory of
differential equations which says that in this special case, the other solution is
of the form te 7.

REMARK: You should check explicitly that te~7* solves the equation & +2vy&+~v2x =
0. Or if you want to, you can derive it in the spirit of Problem 1. In the more general
case where there are n identical roots in the procedure leading to eq. (3.10) (call
them all «), the n independent solutions to the differential equation are t*e®*, for
0 <k < (n—1). But more often than not, there are no repeated roots, so you don’t
have to worry about all this. &

Figure 3.4

x(t)

Figure 3.5
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Our solution is therefore of the form
z(t) = e (A + Bt). (3.20)

The exponential factor eventually wins out over the Bt term, of course, so the
motion goes to zero for large ¢ (see Fig. 3.6).

If we are given a spring with a fixed w, and if we look at the system at different
values of v, then critical damping (when v = w) is the case where the motion
converges to zero in the quickest way (which is like e™*). This is true because
in the underdamped case (y < w), the envelope of the oscillatory motion goes
like e, which goes to zero slower than e™“!, since ¥ < w. And in the
overdamped case (7 > w), the dominant piece is the e~ (=Dt term. And as
you can verify, if ¥ > w then v — Q = v — /72 — w? < w, so this motion also
goes to zero slower than e~“!.

3.2.3 Driven (and damped) harmonic motion
Mathematical prelude

Before we examine driven harmonic motion, we have to learn how to solve a new
type of differential equation. How can we solve something of the form

& + 2y + ax = Coet°!, (3.21)

where wq is a given quantity? This is an inhomogeneous differential equation, due
to the term on the right-hand side. It’s not very physical, since the right-hand side
is complex, but we're doing math now. Equations of this sort will come up again
and again, and fortunately there is a nice, easy (although sometimes messy) method
for solving them. As usual, the method is to make a reasonable guess, plug it in,
and see what condition comes out.

Since we have the €™ sitting on the right side, let’s try a solution of the form
z(t) = Ae™0!, (A will depend on wy, among other things, as we will see.) Plugging
this into eq. (3.21), and canceling the non-zero factor of ¢!, we obtain

(—wd)A + 2y(iwp) A + aA = Cy. (3.22)

Solving for A, we find our solution for z to be

Co ;
t) = ot 3.23
z(t) (—w%—}—%ywo—i—a) ¢ ( )

Note the differences between this technique and the one in Example 3 in Section
3.1. In that example, the goal was to determine what the « in z(t) = Ae* had
to be. And there was no way to solve for A; the initial conditions determined A.
But in the present technique, the wy in z(t) = Ae™! is a given quantity, and the
goal is to solve for A in terms of the given constants. Therefore, in the solution in
eq. (3.23), there are no free constants to be determined by initial conditions. We've
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found one particular solution, and we’re stuck with it. (The term particular solution
is what people use for eq. (3.23).)

With no freedom to adjust the solution in eq. (3.23), how can we satisfy an
arbitrary set of initial conditions? Fortunately, eq. (3.23) does not represent the
most general solution to eq. (3.21). The most general solution is the sum of our
particular solution in eq. (3.23), plus the ‘homogeneous’ solution we found in eq.
(3.8). This is obvious, because the solution in eq. (3.8) was explicitly constructed
to yield zero when plugged into the left-hand side of eq. (3.21). Therefore, tacking
it onto our particular solution won’t change the equality in eq. (3.21), because the
left side is linear. The principle of superposition has saved the day.

The complete solution to eq. (3.21) is therefore

z(t) =e " (AetV 7’=a 4 Be TtV 72_“) + ( Co ) ™ot (3.24)

—wd + 2iywy +a

where A and B are determined by the initial conditions.
It is clear what the strategy should be if we have a slightly more general equation
to solve, for example,

&+ 2y + ax = Cre™'! 4 Coe?t. (3.25)

Simply solve the equation with only the first term on the right. Then solve the
equation with only the second term on the right. Then add the two solutions. And
then add on the homogeneous solution from eq. (3.8). We are able to apply the
principle of superposition because the left-hand side of our equation is linear.
Finally, let’s look at the case where we have many such terms on the right-hand

side, for example,
N

T+ 2y +azx = Z Cpent, (3.26)
n=1
We simply have to solve N different equations, each with just one of the N terms on
the right-hand side. Then add up all the solutions, then add on the homogeneous
solution from eq. (3.8). If N is infinite, that’s fine. You’ll just have to add up an
infinite number of solutions. This is the principle of superposition at its best.

REMARK: The previous paragraph (which is only applicable because the left-hand side
of (3.26) is linear), combined with a basic result from Fourier analysis, allows us to solve (in
principle) any equation of the form

42y + ax = f(¢). (3.27)

Fourier analysis says that any (nice enough) function, f(t), may be decomposed into its
Fourier components,

s0 = [ " gwyet. (3.28)

In this continuous sum, the functions g(w) take the place of the coefficients C;, in eq. (3.26).
So, if S, (t) is the solution for x(t) when there is only the term e** on the right-hand side
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of eq. (3.27) (that is, S, (t) is the solution given in eq. 3.23)), then the complete particular
solution to (3.27) is

a(t) = / 9()S. (). (3.29)

Finding the coefficients g(w) is the hard part (or, rather, the messy part), but we won’t
bother getting into that here. We won’t do anything with Fourier analysis in this course,
but we just wanted to let you know that it is possible solve (3.27) for any function f(t).
Most of the functions we’ll consider will be nice functions like coswgt, for which the Fourier
decomposition is simply coswot = 5 (et + e~ot). &Let’s now do a physical example.

Example (Driven spring): Consider a spring with spring constant k. A mass
m at the end of the spring is subject to a friction force proportional to its velocity,
F; = —bv. The mass is also subject to a driving force, Fy(t) = Fjcoswqat (see
Fig. 3.7). What is the position as a function of time?

Solution:  The force on the mass is F(z,#,t) = —bz —kxz + Fycoswgt. So F' = ma
gives
#4+ 2y +w?x = Fcoswgt
F . .
= 3 (et 4 ewat) | (3.30)

where 2y = b/m, w = \/k/m, and F = F;/m. Using eq. (3.23) and the technique of
adding solutions mentioned after eq. (3.25), our particular solution is

z,(t) = ( F/2 ) etwat 4 ( F/2 ) e~ wat, (3.31)

—w? + 2iywg + w? —w3 — 2iywq + w?

The complete solution is the sum of this particular solution and the homogeneous
solution from eq. (3.17).

Let’s simplify eq. (3.31) a bit. Getting the 4’s out of the denominators, and turning
the exponentials into sines and cosines, we find (as you can show)

F(w? — w?) 2Fywa .
zp(t) = <(w2 — ) T 4 cos wqt + @@ o) + 472 sinwgt. (3.32)

Note that this is real, as it must be, if it is to describe the position of a particle.

REMARK: If you wish, you can solve eq. (3.30) by simply taking the real part of the solution
to eq. (3.21) (that is, the x(t) in eq. (3.23)), because Re(e“@!) = cos(wgt). It is clear that
(with Co = F') the real part of eq. (3.23) does indeed give eq. (3.32), because in eq. (3.31)
we’ve just taken half of a quantity plus its complex conjugate, which is the real part.

If you don’t like using complex numbers, another way of solving eq. (3.30) is to keep it
in the form with the coswgt on the right, and then simply guess a solution of the form
A coswgt + B coswgt, and solve for A and B. The result will be eq. (3.32). &

We can simplify eq. (3.32) a bit further. If we define

R=1/(? - wd)’ + (2w, (3.33)
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then we may rewrite eq. (3.32) as

F ([ (w?—w? 2
zp(t) = o (% coswgt + ’;;)d sin wdt>
F
= = cos(wgt — @), (3.34)
R
where ¢ is defined by
2 2
_wr—wi o 2ywg _ 2ywq
COS¢— T,Sln¢— R - tan¢— m (335)

(Note that 0 < ¢ < m, since sin ¢ is positive.)

Recalling the solution in eq. (3.17), we may write the complete solution to eq. (3.30)
as

z(t) = % cos(wat — @) + e~ (Ae + Be= ). (3.36)

The constants A and B are determined by the initial conditions. Note that if there
is any damping at all in the system (that is, v > 0), then the homogeneous part of
the solution goes to zero for large ¢, and we are left with only the particular solution.
In other words, the system approaches a definite z(t), independent of the initial
conditions.

REMARK: The amplitude of the solution in eq. (3.34) is proportional to 1/R = [(w? —
w2)? + (2ywa)?]™"/2. Given wy and 7, this is maximum when w = wy. Given w and ~, this
is maximum when wqy = \/w? — 242, in the case of weak damping (that is, v <« w), the
maximum is achieved when wy &~ w. The term resonance is used to describe this situation
where the natural frequency of the driving force is picked just right to make the amplitude
of the oscillations as large as possible. Note that the phase angle ¢ equals 7/2 when wq & w;
the motion of the particle lags the driving force by a quarter of a cycle. &

3.3 Coupled oscillators

Mathematical prelude

In the previous sections, we have dealt with only one function of time, z(t). What
if we have two functions of time, say z(t) and y(¢), which are related by a pair of
“coupled” differential equations? For example,

27 4+ w?(5z — 3y) = 0,
2i + w?(5y —3z) = 0. (3.37)

We'll assume w? > 0 here, but this isn’t necessary. We call these equations “coupled”
because there are z’s and y’s in both of them, and it is not immediately obvious how
to separate them to solve for x and y. There are (at least) two methods of solving
these equations.
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First method: Sometimes it is easy, as in this case, to find certain linear com-

binations of the given equations for which nice things happen. Taking the sum, we
find

(& + ) + w*(z +y) = 0. (3.38)
This equation involves z and y only in the combination of their sum, = + y. The

solution is
z+y = Ay cos(wt + ¢1), (3.39)

where A; and ¢; are determined by initial conditions. (It could also be written as a
sum of exponentials, or the sum of a sine and cosine, of course.) We may also take
the difference, to find

(& — §) + 4w’ (z —y) = 0. (3.40)
This equation involves  and y only in the combination of their difference, x — y.

The solution is
z —y = Ag cos(2wt + ¢o), (3.41)

(
Taking the sum and difference of eqs. (3.39) and (3.41), we find

z(t) = Bjcos(wt+ ¢1
y(t) = Bjcos(wt+ ¢y

+ By cos(2wt + ¢9),

)
) — By cos(2wt + ¢2), (3.42)
where the B; are half of the A;.

The strategy of this solution was simply to fiddle around and try to form differ-
ential equations that involve the same combination of the variables on both sides,
such as egs. (3.38) and (3.40). Then you just call this combination by the new
name, “2”, if you wish, and write down the obvious solution for z, as in egs. (3.39)
and (3.41).

We’ve managed to solve our equations for z and y. However, the more interesting
thing we’ve done is produce the equations (3.39) and (3.41). The combinations
(z +vy) and (z — y) are called the normal coordinates of the system. These are the
combinations that oscillate with one pure frequency. The motion of z and y will, in
general, look rather complicated, and it may be difficult to tell that the motion is
really made up of just the two frequencies in eq. (3.42). But if you plot the values
of (z + y) and (z — y) as time goes by, then you will find nice sinusoidal graphs,
even if x and y are each behaving in a rather unpleasant manner.

Second method: In the event that it is not easy to guess what linear combina-
tions of egs. (3.37) will yield equations involving just one combination of z and y
(the z + y and = — y above), there is a fail-proof method for solving for z and y. In
the spirit of Section 3.1, let us try a solution of the form z = Ae*®* and y = Be®?,
which we will write (for convenience) as

(2)-(3)em o

It is not obvious that there should exist solutions for z and y which have the same
t dependence, but let’s try it and see what happens. Note that we’ve explicitly put
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the ¢ in the exponent, but there’s no loss of generality here. If a happens to be
imaginary, then the exponent is real. It’s personal preference whether or not you
put the 7 in.

Plugging our guess into eqs. (3.37), and dividing through by e™*, we find

24(—a?) + 5Aw? — 3Bw? = 0,
2B(—a?) + 5Bw? — 3Aw* = 0, (3.44)

or equivalently, in matrix form,

—2a? + bw? —3w? AY [0
( —3w? —20? + bw? B) \0])° (3.45)

This homogeneous equation for A and B has a nontrivial solution (that is, one
where A and B aren’t both 0) only if the matrix is not invertible (because if it were
invertible, we could just multiply through by the inverse to obtain (A4, B) = (0,0)).

When is a matrix invertible? There is a straightforward (although tedious)
method for finding the inverse of a matrix. It involves taking cofactors, taking a
transpose, and dividing by the determinant. The step that concerns us here is the
division by the determinant. The inverse will exist if and only if the determinant is
not zero. So we see that eq. (3.45) has a nontrivial solution only if the determinant
is zero. Since we seek a nontrivial solution, we must demand that

0 —2a? + 5w? —3w?
- —3w? —2a? + 5w?
= 4a* —2002w? + 16w*. (3.46)

The roots of this equation are o = +w and o = +2w. We have therefore found
four types of solutions. If & = +w, then we can plug this back into eq. (3.45) to
obtain A = B. (Both equations give this same result. This was essentially the point
of setting the determinant equal to 0.) If & = +2w, then eq. (3.45) gives A = —B.
(Again, the equations are redundant.) Note that we cannot solve exactly for A and
B, but only for their ratio. Adding up our four solutions, we see that z and y take
the general form (written in vector form for the sake of simplicity and bookkeeping),

() +(3)=oa(1)
A ( _11 >e2iwt +A4< _11 >e—2iwf. (3.47)

The four A; are determined from the initial conditions.

We can rewrite eq. (3.47) in a somewhat cleaner form. If the coordinates
and y describe the positions of particles, they must be real. Therefore, A; and
Ay must be complex conjugates, and likewise for A3 and A4. If we then define
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Ay = Ay = (B1/2)e' and Af = A3 = (By/2)e'??, we may rewrite the solution in
the form

( E;Eg ) = B ( 1 ) cos(wt + ¢1) + By ( _11 ) cos(2wt + ¢2), (3.48)

where the B; and ¢; are real (and are determined from the initial conditions). We
have therefore reproduced the result in eq. (3.42).

It is clear from eq. (3.48) that the combinations z + y and =z — y (the normal
coordinates) oscillate with pure frequencies w and 2w, respectively.

It is also clear that if By = 0, then z = y at all times, and they both oscillate
with frequency w. And if B; = 0, then x = —y at all times, and they both oscillate
with frequency 2w. These two pure-frequency motions are called the normal modes.
They are labeled by the vectors (1,1) and (1, —1). The significance of normal modes
will become clear in the following example.

Example (Two masses, three springs): Consider two masses, m, connected to
each other and to two walls by three springs, as shown in Fig. 3.8. The three springs
have the same spring constant k. Find the positions of the masses as functions of
time. What are the normal coordinates? What are the normal modes?

Solution:  Let z4(¢) and z2(t) be the positions of the left and right masses, re-
spectively, relative to their equilibrium positions. The middle spring is stretched a
distance x5 — z1. Therefore, the force on the left mass is —kz; + k(z2 — 1), and the
force on the right mass is —kxzs — k(x2 — x1). (It’s easy to make a mistake on the
sign of the second term in these expressions. You can double check the sign by, say,
looking at the force when x5 is very big.) Therefore, F = ma on each mass gives
(with w? = k/m)

F1 4 2wlr — Wlry, = 0,

Fo + 20lmy — Wz = 0. (3.49)
These are rather friendly coupled equations, and we can see that the sum and differ-
ence are the useful combinations to take. The sum gives

(&1 + &) + w?(z1 +22) = 0, (3.50)
and the difference gives

(&1 — &) + 3w (z1 — z2) = 0. (3.51)
The solutions to these equations are the normal coordinates,

x1+zo = Ay cos(wt+ dy),
1 —xy = A_cos(V3wt+ p_). (3.52)

Taking the sum and difference of these normal coordinates, we have

z1(t) = B, cos(wt+ ¢;)+ B_cos(v3wt + ¢_),
z9(t) = By cos(wt + ¢4) — B_ cos(vV3wt + ¢_), (3.53)
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where the B’s are half the A’s.

REMARK: We may also derive egs. (3.53) by using the determinant method. Letting
z1 = Ae’® and x5 = Be™!, we see that for there to be a nontrivial solution for A and B,
we must have

0 —o? + 2w? —w?
- —w? —a? 4 2w?
= o' —4a’w’ 4 30" (3.54)

The roots of this equation are a = +w and a = +v3w. If @ = w, then eq. (3.49) yields
A= B. If o = +1/3w, then eq. (3.49) yields A = —B. The solutions for #; and 2 therefore
take the general form

() - a(1)en ()
+A3 ( _11 ) eV3iwt 4 A, ( _11 > o V3iwt
— B+< i )cos(wt+¢+)+B_ ( _11 )cos(\/§wt+¢_). (3.55)

This is equivalent to eq. (3.53). &

The normal modes are obtained by setting either B_ or B, equal to zero in
eq. (3.53). Therefore, they are (1,1) and (1,—1). How do we visualize these?
The mode (1, 1) oscillates with frequency w. In this case (where B_ = 0), we
have z1(t) = z2(t), at all times. So the masses simply oscillate back and forth
in the same manner, as shown in Fig. 3.9. It is clear that such motion has
frequency w, because as far as the masses are concerned, the middle spring
is not there, so each mass moves under the influence of just one spring, and
hence with frequency w.

The mode (1, —1) oscillates with frequency v/3w. In this case (where B, = 0),
we have x1(t) = —xz2(t), at all times. So the masses oscillate back and forth
with opposite displacements, as shown in Fig. 3.10. It is clear that this
mode should have a frequency larger than that of the other mode, because the
middle spring is being stretched, so the masses feel a larger force. But it takes
a little thought to show that the frequency is v/3w.

REMARK: The normal mode (1,1) above is associated with the normal coordinate

z1 + x2; they both involve the frequency w. However, this association is not due to the fact
that the coefficients of both z; and x5 in this normal coordinate are equal to 1. Rather, it is
due to the fact that the other normal mode (namely (z1,z2) o (1, —1)) gives no contribution
to the sum z1 + x>.

There are a few too many 1’s floating around in the above example, so it’s hard to see

what results are meaningful and what results are coincidence. The following example should
clear things up. Let’s say we solved a problem using the determinant method, and we found
the solution to be

(58) -8 (2)torsoren (L Josrron. o

Figure 3.9

Q QOIS QQQ

Figure 3.10
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Then 5z + y is the normal coordinate associated with the normal mode (3,2), which has
frequency wi. And 2z — 3y is the normal coordinate associated with the normal mode
(1,—5), which has frequency wo. &

REMARK: Note the difference between the types of differential equations we solved in
Section 2.3 of the previous chapter, and the types we solved in this chapter. The former
dealt with forces that did not have to be linear in z or %, but which had to depend on only
z, or only &, or only ¢t. The latter dealt with forces that could depend on all three of these
quantities, but which had to be linear in z and . &
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3.4 Exercises

Section 3.2: Oscillatory motion

1. Corrections to the pendulum s*xx

(a)

For small oscillations, the period of a pendulum is approximately T =
2my/2/g, independent of amplitude, 6. For finite oscillations, show that
the exact expression for T is

6
P Ly 51
g Jo +/cos@ — cosb

Let’s now find an approximation to this value of T'. It’s more convenient
to deal with quantities that go to 0 as 8 — 0, so make use of the identity
cos ¢ = 1—2sin?(4/2) to write T in terms of sines. Then make the change
of variables, sinz = sin(0/2)/sin(6y/2). Finally, expand your integrand
judiciously in powers of (the fairly small quantity) 6y, and perform the

integrals to show
T2 : 1+ % + (3.58)
2y — —+---]. .
g 16

2. Angled rails

Two particles of mass m are constrained to move along two rails which make
an angle of 20 with respect to each other, as shown in Fig. 3.11. They
are connected by a spring with spring constant k. What is the frequency of
oscillations for the motion where the spring remains parallel to its equilibrium
position?

3. Springs all over *x

(a)

A mass m is attached to two springs which have equilibrium lengths
equal to zero. The other ends of the springs are fixed at two points (see
Fig. 3.12). The spring constants are the same. The mass rests at its
equilibrium position and is then given a kick in an arbitrary direction.
Describe the resulting motion. (Ignore gravity.)

A mass m is attached to a number of springs which have equilibrium
lengths equal to zero. The other ends of the springs are fixed at various
points in space (see Fig. 3.13). The spring constants are all the same.
The mass rests at its equilibrium position and is then given a kick in an
arbitrary direction. Describe the resulting motion. (Ignore gravity.)

Section 3.3: Coupled oscillators

4. Springs between walls *x

Four identical springs and three identical masses lie between two walls (see
Fig. 3.14). Find the normal modes.

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14
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m m
Figure 3.15 5. Springs and one wall *x
(a) Two identical springs and two identical masses are attached to a wall as
Kk Kk Kk shown in Fig. 3.15. Find the normal modes.
m m m (b) Three identical springs and three identical masses are attached to a wall

as shown in Fig. 3.16. Find the normal modes.
Figure 3.16
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3.5 Problems

Section 3.1: Linear differential equations

1.

A limiting case *

Consider the equation & = az. If a = 0, then the solution to £ = 0 is of course
z(t) = C + Dt. Show that in the limit ¢ — 0, eq. (3.5) reduces to this form.
Note: a — 0 is a very sloppy way of saying what we mean. What is the precise
mathematical condition we should write?

Section 3.2: Oscillatory motion

2.

Exponential force

A particle of mass m is subject to a force F(t) = me . The initial position
and speed are 0. Find z(t).

(This problem was already given in Chapter 2, but solve it here in the spirit
of Section 3.2.3.)

. Average tension **

Is the average (over time) tension in the string of a pendulum larger or smaller
than mg? How much so? (As usual, assume that the angular amplitude, A,
is small.)

. Through the circle x*x

A very large plane (consider it to be infinite), of mass density ¢ (per area),
has a hole of radius R cut in it. A particle initially sits in the center of the
circle, and is then given a tiny kick perpendicular to the plane. Assume that
the only force acting on the particle is the gravitational force from the plane.
Find the frequency of small oscillations (that is, where the amplitude is small
compared to R).

Section 3.3: Coupled oscillators

5.

Springs on a circle **x*x

(a) Two identical masses are constrained to move on a circle. Two identical
springs connect the masses and wrap around a circle (see Fig. 3.17).
Find the normal modes.

(b) Three identical masses are constrained to move on a circle. Three identi-
cal springs connect the masses and wrap around a circle (see Fig. 3.18).
Find the normal modes.

(c) How about the general case with N identical masses and N identical
springs?

Figure 3.18
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m 2m
6. Unequal masses *x

Fi .1 . . . .
igure 3.19 Three identical springs and two masses, m and 2m, lie between two walls as

shown in Fig. 3.19. Find the normal modes.
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3.6 Solutions

1. A limiting case

The statement a — 0 is nonsensical, because a has units of [time]~2, and the number
0 has no units. The proper statement is that eq. (3.5) reduces to z(t) = C + Dt
when ¢ satisfies t < 1/4/a. Both sides of this relation have units of time. Under this
condition, v/at < 1, so we may write eVat approximately as 1 + y/at. Therefore,
eq. (3.5) becomes

Q

A1+ +/at)+ B(1 —+at)
(A+ B) ++/a(A - B)t
= C+Dt (3.59)

z(t)

If C and D happen to be of order 1 in the units chosen, then A and B must be roughly
negatives of each other, and both of order 1/4/a.

If a is small but nonzero, then ¢ will eventually become large enough so that the linear
form in eq. (3.59) is not valid.
2. Exponential force

Guess a particular solution to & = e~ of the form z(t) = Ce~%. Then C = 1/b%.

The solution to the homogeneous equation Z = 0 is z(t) = At + B. Therefore,

the complete solution for z is x(t) = e~%/b? + At + B. The initial conditions are

0=v(0)=-1/b+ A, and 0 = z(0) = 1/b*> + B. Therefore,

et 1

— + - — . 3.60
R (3.60)

3. Average tension

Let the length of the pendulum be £. We know that the angle, 6, depends on time
according to

0(t) = Acos(wt), (3.61)
where w = /g/¢, and A is small. The tension, T, in the string must account for the

radial component of gravity, mg cos 8, plus the centripetal acceleration, ml62. Using
eq. (3.61), this gives

2
T = mgcos (A cos(wt)) + mZ( —wA sin(wt)) . (3.62)
Using the small-angle approximation cosa & 1 — a?/2, we have (since A4 is small)

1
T =~ mg (1 - §A2 cosQ(wt)> + mlw? A? sin?(wt)

mg 4+ mgA? (sin2 (wt) — %0052 (wt)) . (3.63)

The average value of sin? @ and cos? 8 over one period is 1 /2, so the average value for
T is 1
T =mg+ EmgA2, (3.64)

which is larger than mg, by mgA?/2.

Note that it is quite reasonable to expect T > mg, because the average value of the
vertical component of T equals mg (since the pendulum has no net rise or fall over
a long period of time), and there is some positive contribution from the horizontal
component of T'.
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4. Through the circle

By symmetry, only the component of the gravitational force perpendicular to the
plane will survive. Let the particle’s coordinate relative to the plane be z, and let its
mass be m. Then a piece of mass dm at radius r on the plane will provide a force
equal to Gm(dm)/(r? + 22). To get the component perpendicular to the plane, we
must multiply this by z/4/r2 + 22. So the total force on the particle is

Fz) _/ oGmz2nr dr

r (12 + 22)3/2

. =00
2roGmz(r? + 22)1/?
r=R

2roGmz

VT2
_ 2roGmz

Mo (3.65)

where we have used z € R. Therefore, F' = ma gives

L 2roG
R

The frequency of small oscillations is then

227G
w =1/ T (3.67)

REMARK: For everyday values of R, this is a rather small number, because G is so small.
Let’s roughly determine its size. If the sheet has thickness d, and it is made out of a material
with density p (per volume), then ¢ = pd. Hence, w = /27pdG/R.

z2=0. (3.66)

In the above analysis, we assumed the sheet was infinitely thin. In practice, we would need d
to be much smaller than the amplitude of the motion. But this amplitude needs to be much
smaller than R, in order for our approximations to hold. So we conclude that d < R. To get
a rough upper bound on w, let’s pick d/R = 1/10; and let’s make p be five times the density
of water (i.e., 5000 kg/m®). Then w = 5-10"*s™", which corresponds to a little more than
one oscillation every 4 hours.

For an analogous system consisting of electrical charges, the frequency is much larger, since
the electrical force is so much stronger than the gravitational force. &

5. Springs on a circle

(a) Pick two equilibrium positions (any diametrically opposite points will do). Let
the distances of the masses from these points be x1 and x5 (measured counter-
clockwise). Then the equations of motion are

mji"l = —2]{,‘(.’13'1 — 3&'2),
mfi'z = —2k($2 - z'l). (368)
The determinant method works here, but let’s just do it the easy way. Adding

these equations gives
1+ 32 =0. (3.69)

Subtracting them equations gives

(.:12'1 — d:”g) + 4w2($1 — 332) =0. (370)
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The normal coordinates are therefore

1 +1x2 = At+ B, and
C cos(2wt + ¢). (3.71)

r1 — T2

And the normal modes are

(g) (})(AH—B), and

( o ) - C( —11 )COS(?WH@- (3.72)

Z2

The first mode has frequency 0, and corresponds to the masses sliding around
the circle, equally spaced, at constant speed.

Pick three equilibrium positions (any three equally spaced points will do). Let
the distances of the masses from these points be 1, x2, and z3 (measured
counterclockwise). Then the equations of motion are

m:'zl"l = —k(.’lj‘l - .'L'Q) - k(flfl - 55'3),
mi'g = —k‘(.CL'Q — .CL'3) — k(.’L‘Q — .Z'l),
mfl:"3 = —k(.’li'3 - .'L'l) - k($3 - 55'2). (373)

It’s easy to see that the sum of these equations gives something nice, Also,
differences between any two of the equations gives something useful. But let’s
use the determinant method to get some practice. Trying solutions proportional
to e’? yields the determinant equation

—a? + 2w? —w? —w?
—w? —a? + 2w? —w? =0. (3.74)
—w? —w? —a? + 2w?

One solution is a@? = 0. The other solution is the double root a® = 3w?.
The a = 0 root corresponds to the vector (1,1,1). So this normal mode is

Iy 1
z | = 1]+ B). (3.75)
I3 1

This mode has frequency 0, and corresponds to the masses sliding around the
circle, equally spaced, at constant speed.

The o? = 3w? root corresponds to a two-dimensional subspace of normal modes.
You can show that any vector of the form (a, b, c) with a + b+ ¢ = 0 is a normal
mode with frequency v/3w. We will arbitrarily pick the vectors (0,1, —1) and
(1,0, —1) as basis vectors in this space. We can then write the normal modes as
linear combinations of the vectors

I 0

T2 = 1 cos(V3wt + ¢1), and

I3 -1

I 1

T2 = 0 | cos(V3wt + ¢»). (3.76)

I3 -1
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REMARKS: This is very similar to the example in section 3.3 with three springs and
two masses oscillating between two walls. The way we’ve written these modes, the
first one has the first mass stationary (so there could be a wall there, for all the other
two masses know), and the second one has the second mass stationary.

The normal coordinates in this problem are z; + z2 + 3 (obtained by adding the three
equations in (3.73)), z2 — z3 (obtained by subtracting the third eq. in (3.73) from the
second), and 1 — z3 (obtained by subtracting the third eq. in (3.73) from the first).
Actually, any combination of the form ax1 + bza + crs, with a +b+ ¢ = 0, is a normal
mode (obtained by taking a times the first eq. in (3.73), etc.) &

In part (b), what we were essentially doing, by setting the determinant in eq.
(3.74) equal to 0, was finding the eigenvectors! of the matrix

2 -1 -1 11
-1 2 -1 ]=3I-111
-1 -1 2 11

(3.77)

e

We haven’t bothered writing the common factor w2, since this won’t affect the
eigenvectors. We’'ll let the reader show that for the general case of N springs
and masses, the above matrix becomes the N x N matrix

3I -

I

OO = =
O = =
=
=]
oSS oo =

31— M. (3.78)

1000 ---1

In M, the three consecutive 1’s keep shifting to the right, and they wrap around
cyclicly.
Let’s now be a little tricky. We can guess the eigenvectors and eigenvalues of M
if we take a hint from its cyclic nature. A particular set of things that are rather
cyclic are the Nth roots of 1. If n is an Nth root of 1, we leave it to you to
show that (1,7,72,...,7V ') is a eigenvector of M with eigenvalue ' +1+41.
(This general method works for any matrix where the entries keep shifting to
the right, and the entries don’t even have to be equal.) The eigenvalues of the
entire matrix in eq. (3.78) are therefore 3— (n~' +1+4+n) =2-n=1 —1.
There are N different N'th roots of 1, namely 7,, = e2™/N _ So the N eigenvalues
are

A =2 — (e’z’”'"/N + 62”"/N) =2 — 2cos(2mn/N). (3.79)

The corresponding eigenvectors are
n:@wm%wwﬂ”) (3.80)

The eigenvalues come in pairs. The numbers n and N — n give the same value.
This is fortunate, since we may then form real linear combinations of the two

! An eigenvector, v, of a matrix, M, is a vector that gets taken into a multiple of itself when
acted upon by M. That is, Mv = A\v, where XA is some number. You can prove for yourself that such
a X\ must satisfy det |M — AI| = 0, where I is the identity matrix. We don’t assume a knowledge of
eigenvectors in this course, so don’t worry about this problem.
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corresponding eigenvectors. The vectors

1
cos(2mn/N)
V= %(Vn + Vien) = cos(4dmn/N) (3.81)
cos(2(N - 1)mn/N)
and
0
. s%n(27m/N)
Vo= Z(Vn — Vien) = sin(4mn/N) (3.82)

sin(2(N — 1)mn/N)

both have eigenvalue A,,. The frequencies corresponding to these normal modes

are

Wn = VA = /2 = 2cos(2nn/N). (3.83)
The only values for which the n’s don’t pair up are 0, and N/2 (if N is even).
Let’s check our results for N = 3. If n =0, we find Ao =0, and Vy = (1,1,1).
If n =1, we find \; = 3, and V;* = (1,-1/2,-1/2) and V;~ = (0,1/2,-1/2).
These two vectors span the same space we found in part (b).

6. Unequal masses

Let 21 and x5 be the positions of the left and right masses, respectively, relative to
their equilibrium positions. The equations of motion are

X+ 2w2x1 - w2:v2 = 0,
2%9 + 2wlxy — w3z = 0. (3.84)
The appropriate linear combinations of these equations are not obvious, so we’ll use

the determinant method. Letting z1 = Ae’®* and x5 = Be'!, we see that for there
to be a nontrivial solution for A and B, we must have

0 — —a? + 2w? —w?
- —w? —202 + 2w?
= 20" — 60w + 3wt (3.85)

The roots of this equation are

a = twif 3 +2\/§ = +ay, and a=zw 3 _2\/3 = +as. (3.86)

If o® = o2, then the normal mode is proportional to (v/3 4+ 1,—1). If a® = o2, then
the normal mode is proportional to (v/3 — 1,1). So the normal modes are

(x> B (@Tl)cos(altm), and

Z2

( s ) - ( \/51_ 1 )COS(a2t+¢2), (3.87)

T2

Note that these two vectors are not orthogonal. There is no need for them to be.) You
can easily show that the normal coordinates are x1 — (\/5— 1)z, and z1 + (\/§+ 1)za,
respectively.
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