Chapter 2

Using F' = ma

2.1 Newton’s Laws

The general goal of classical mechanics is to determine what happens to a given set
of objects in a given physical situation. In order to figure such things out, we need
to know what makes objects move the way they do. This subject goes by the name
dynamics, and Newton’s laws are the starting point. These laws may be stated as
follows (there are other possible variations).

e First Law: A body moves with constant velocity (which may be zero) unless
acted on by a force.

e Second Law: The time rate of change of the momentum of a body equals
the force acting on the body.

e Third Law: The forces two bodies apply to each other are equal in magnitude
and opposite in direction.

We could discuss for days on end the degree to which these statements are
physical laws, and the degree to which they are definitions. Sir Arthur Eddington
once made the unflattering comment that the first law essentially says that “every
particle continues in its state of rest or uniform motion in a straight line except
insofar that it doesn’t.” Although Newton’s laws may seem somewhat vacuous at
first glance, there is actually a bit more content to them than Eddington’s statement
implies. Let’s look at each in turn. The discussion will be brief, because we have to
save time for other things in this book that we really do want to discuss for days on
end.

First Law

One thing this law does is give a definition of zero force.

Another thing it does is give a definition of an inertial frame (which is defined
simply as a reference frame in which the first law holds). The term ‘velocity’ is
used, so we have to state what frame of reference we are measuring the velocity
with respect to. The first law does not hold in an arbitrary frame. For example, it
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I1-2 CHAPTER 2. USING F =MA

fails in the frame of a spinning turntable.! Intuitively, an inertial frame is one that
moves at constant speed. But this is ambiguous, because you have to say what the
frame is moving at constant speed with respect to. At any rate, an inertial frame
may be defined as the special type of frame where the first law holds.

So, what we have now are two intertwined definitions of ‘force’ and ‘inertial
frame’. Not much physical content there. But, however sparse in content the law is,
it still holds for all particles. So if we have a frame where one free particle moves
with constant velocity, then if we replace it with another particle, it will likewise
move with constant velocity. This is a statement with content.

Second Law

One thing this law does is give a definition of non-zero force. Momentum is defined?
to be mv. If m is constant, then the law says F = ma, where a = dv/dt. This law
holds only in an inertial frame (which was defined by the first law).

So far, this law merely gives a definition of F. But the meaningful statement
arises when we invoke the fact that the law holds for all particles. If the same force
(for example, the same spring stretched by the same amount) acts on two particles,
with masses m1 and mgy, then their accelerations are related by

oMz (2.1)
a2 m1
This relation holds regardless of what the common force is. Therefore, once you’ve
used one force to find the relative masses of two objects, then you know what the
ratio of their a’s will be when they are subjected to any other force.

Of course, we haven’t really defined mass yet. But eq. (2.1) gives an experimen-
tal method for determining an object’s mass in terms of a standard (say, 1kg) mass.
All you have to do is compare its acceleration with that of the standard mass.

There is also another piece of substance in this law, in that it says F = ma,
instead of, say, F = mv or F = md3x/dt3. This issue is related to the first law.
F = mv is certainly not viable, because the first law says that it is possible to have
a velocity without a force. And F = md3x/dt?® would make the first law incorrect,
because it would then be true that a particle moves with constant acceleration
(instead with constant speed) unless acted on by a force.

Note that F = ma is a vector equation, so it is really three equations in one. In
cartesian coordinates, it says that F, = mag, Fy = may, and F, = ma,.

Third Law

This law essentially postulates that momentum is conserved. There isn’t much left
to be defined in this law, so this statement is one of pure content. It says that if you

IWell, it’s possible to fudge things so that Newton’s laws hold in such a frame, but we’ll save
the discussion of this for Chapter 9.

*We’re doing everything nonrelativistically here, of course. Chapter 11 gives the relativistic
modification of the mv expression.
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have two isolated particles, then their accelerations are opposite in direction and
inversely proportional to their masses.

This third law cannot be a definition, because it’s actually not always valid. It
only holds for forces of the ‘pushing’ and ‘pulling’ type. It fails for the magnetic
force, for example.

2.2 Free-body diagrams

The law that allows us to be quantitative is the second law. Given a force, we can
apply F = ma to find the acceleration. And knowing the acceleration, we should be
able to determine the behavior of a given object (that is, where it is and how fast
it is moving). This process sometimes takes a bit of work, but there are two basic
types of situations that commonly arise.

e In many problems, all you are given is a physical situation (for example, a
block resting on a plane, strings connecting masses, etc.), and it is up to you
to find all the forces acting on all the objects. These forces generally point in
various directions, so it is easy to lose track of them. It therefore proves useful
to isolate the objects and draw all the forces acting on each of them. This is
the subject of the present section.

e In other problems, you are given the force, F(x), as a function of position
(we’ll just work in one dimension here), and the task immediately becomes
the mathematical one of solving the F(r) = ma = mi equation. These
differential equations can be difficult (or impossible) to solve exactly. They
are the subject of Section 2.3.

Let’s now consider the first of these two types of problems, where we are pre-
sented with a physical situation, and where we must determine all the forces in-
volved. The term free-body diagram is used to denote a diagram with all the forces
drawn on all the objects. After drawing such a diagram, you simply write down all
the F' = ma equations it implies. The result will be a system of linear equations
in various unknown forces and accelerations. This procedure is best understood
through an example.

Example (A plane and masses): Mass M; is held on a plane with inclination
angle 0, and mass M» hangs over the side. They are connected by a massless string
which runs over a massless pulley (see Fig. 2.1). The coefficient of friction (assume
the kinetic and static coefficients are equal) between M; and the plane is u. Mass M,
is released. Assume that M- is sufficiently large so that M; gets pulled up the plane.
What is the acceleration of the system? What is the tension in the string?

Solution: The first thing to do is draw all the forces on the two masses. These
are shown in Fig. 2.2. The forces on M> are gravity and the tension. The forces on
M, are gravity, friction, the tension, and the normal force. The friction force points
down the plane, since we are assuming that M; moves up the plane.

Figure 2.2

Mg



Figure 2.3
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We now simply have to write down all the F' = ma equations. When dealing with
My, we could break things up into horizontal and vertical components, but it is
much cleaner to use the components tangential and normal to the plane. These two
components of F = ma, along with the vertical F' = ma for Ms, give

T—f—Mgsind = DMa,
N — Migcosf® = 0,
Mzg -T = Mga, (22)

where we have used the fact that the two masses accelerate at the same rate (and
we have defined the positive direction for M> to be downward). Also, the tension is
the same at both ends of the string, because otherwise there would be a net force on
some part of the string which would then have to undergo infinite acceleration, since
it is massless.

There are four unknowns: T, a, N, and f. Fortunately, we have a fourth equation,
namely f = puN. Therefore, the second equation above gives f = uMigcosf. The
first equation then becomes T'— uMi g cos§ — M1 gsin @ = Mia. This may be combined
with the third equation to give

M1M29

_ g(Ms — pM; cos — M, sin 6) B
- My + M,

a= , and
My + M,

(14 pcosf + sinb).

(2.3)
Note that we must have My > M;(ucosf + siné) in order for M; to move upward.
This is clear from looking at the forces tangential to the plane.

REMARK: If we had instead assumed that M; was sufficiently large so that it slides down
the plane, then the friction force would point up the plane, and we would have found

o= g(M2 + pMi cos @ — M; sin 6)
M1 + M ’

_ MiMsg

and =
M1 + M

(1—pcos@+sinh). (2.4)

In order for M; to move downward (i.e., a < 0), we must have M> < Mi(sin 6 — pcos ).
Therefore, M (sin€ — pcosf) < My < My(pcos6 + sin ) is the range of M, for which the
system doesn’t move. &

In problems like the one above, it is clear what things you should pick as the
objects on which you’re going to draw forces. But in other problems, there are
various different subsystems you can choose, and you must be careful to include
all the relevant forces on a given subsystem. Which subsystems you want to pick
depends on what quantities you're trying to find. Consider the following example.

Example (Platform and pulley): A person stands on a platform-and-pulley
system, as shown in Fig. 2.3. The masses of the platform, person, and pulley are M,
m, and u, respectively.® The rope is massless. Let the person pull up on the rope so
that she has acceleration a upwards.

(a) What is the tension in the rope?

3 Assume that the pulley’s mass is concentrated at its center, so we don’t have to worry about
any rotational dynamics (the subject of Chapter 7).
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(b)

What is the normal force between the person and the platform? What is the
tension in the rod connecting the pulley to the platform?

Solution:

(a)

To find the tension in the rope, we simply want to let our subsystem be the
whole system. If we imagine putting the system in a black box (to emphasize
the fact that we don’t care about any internal forces within the system), then
the forces we see “protruding” from the box are the three weights (Mg, mg,
and pg) downward, and the tension T upward. Applying F' = ma to the whole
system gives

T—(M+m+p)g=(M+m+pa = T=(M+m+p)(g+a). (2.5)

To find the normal force, N, between the person and the platform, and also the
tension, f, in the rod connecting the pulley to the platform, it is not sufficient
to consider the system as a whole. We must consider subsystems.

Let’s apply F' = ma to the person. The forces acting on the person are gravity,
the normal force from the platform, and the tension from the rope (pulling
downward on the person at her hand). Therefore, we have

N —T —mg = ma. (2.6)

Now apply F' = ma to the platform. The forces acting on the platform are
gravity, the normal force from the person, and the force upwards from the rod.
Therefore, we have

f—N—-Mg= Ma. (2.7)

Now apply F' = ma to the pulley. The forces acting on the pulley are gravity,
the force downward from the rod, and twice the tension in the rope (since it
pulls up on both sides). Therefore, we have

2T — f — pug = pa. (2.8)

Note that if we add up the three previous equations, we obtain the F' = ma
equation in eq. (2.5), as should be the case, since the whole system is the sum
of the three previous subsystems. Eqgs. (2.6) — (2.8) are three equations in the
three unknowns (T, N, and f). Their sum quickly yields the T in (2.5), and
then egs. (2.6) and (2.8) give, respectively,

N = (M +2m+ u)(g + a), and f=(2M+2m+pu)(g+a), (2.9)

as you can show.

Of course, you can also obtain these results by considering subsystems different
from the ones we chose above (for example, you might choose the pulley-plus-
platform, etc.). But no matter how you choose to break up the system, you will
need to produce three independent F' = ma statements in order to solve for the
three unknowns (7', N, and f).

In problems like this one, it is easy to make a mistake by forgetting to include
one of the forces, such as the second T" in eq. (2.8). The safest thing to do,
therefore, is to isolate each subsystem, draw a box around it, and then write
down all the forces that “protrude” from the box. Fig. 2.4 shows the free-body
diagram for the subsystem of the pulley.

Figure 2.4



I1-6 CHAPTER 2. USING F =MA

2.3 Solving differential equations

Let’s now consider the type of problem where we are given the force F(z) as a
function of position, and where our task is to solve the F'(z) = ma = m# differential
equation, to find the position as a function of time, z(¢). In the present section, we
will develop a few techniques for solving differential equations. The ability to apply
these techniques dramatically increases the number of problems we can solve.

In general, the force F' is a function of the position z, the speed %, and the
time t. (Of course, it could be a function of dz/dt?, d3z/dt?, etc., but these cases
don’t arise much, so we won’t worry about them.) We therefore want to solve the
differential equation,

mi = F(xz,1,1). (2.10)

In general, this equation cannot be solved exactly for z(t).* But for most of

the problems we will deal with, it can be solved. The problems we’ll encounter will
often fall into one of three special cases, namely, where F' is a function of ¢ only,
or z only, or v = & only. In all of these cases, one must invoke the given initial
conditions, zy = z(ty) and vy = v(tp), which appear in the limits of the integrals in
the following discussion.

You may just want to skim the following page and a half, and then refer back
to it, as needed. Don’t try to memorize all the different steps. We present them
only for completeness. The whole point here can basically be summarized by saying
that sometimes you want to write £ as dv/dt, and sometimes you want to write it as
vdv/dx (see eq. (2.14)). Then you ‘simply’ separate variables and integrate. We’ll
go through the three special cases, and then we’ll do some examples.

e F is a function of t only: F = F(t).

Since a = d?z/dt?, we simply have to integrate F' = ma twice to obtain z(t).
Let’s do this in a very systematic way, just to get used to the general procedure.

Write F' = ma as i
v

— = F(t). 2.11

m% = F() (2.11)

Separate variables and integrate both sides to obtain
v(t) t
m / dv' = [ F(t')dt. (2.12)
Vo to

(Primes have been put on the integration variables so that we don’t confuse
them with the limits of integration.) This yields v as a function of ¢, v(¢).
Then separate variables in dz/dt = v(t) and integrate to obtain

z(t) t
/ dr' = / v(t')dt'. (2.13)
T £

0 0
This yields z as a function of ¢, z(¢). This procedure may seem like a cumber-
some way to simply integrate something twice. That’s because it is. But the
technique proves more useful in the following case.

“You can always solve for z(t) numerically, to any desired accuracy. This is discussed in Ap-
pendix D.
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e F is a function of © only: F = F(x).

Use
B dv dzxdv dv

= =27 — = 2.14
@t dtds Vda (2.14)
to write F = ma as
mv ™ = F(a) (2.15)
i . .
Separate variables and integrate both sides to obtain
v(z) z
m/ v dv' = / F(z')dz'. (2.16)
0 o

The left side will contain the square of v(z). Taking a square root, this gives
v as a function of z, v(z). Separate variables in dz/dt = v(z) to obtain

o(t) g t o
= . 2.1
~/$0 U(xl) to at ( 7)

This gives t as a function of z, and hence (in principle) z as a function of ¢,
z(t). The unfortunate thing about this case is that the integral in eq. (2.17)
might not be doable. And even if it is, it might not be possible to invert ¢(z)
to produce z(t).

e F' is a function of v only: F = F(v).
Write F' = ma as
m— = F(v). (2.18)

Separate variables and integrate both sides to obtain

v(t)  do! t
= [ dt. 2.19
i v F(UI) to ( )

This yields ¢ as a function of v, and hence (in principle) v as a function of ¢,
v(t). Integrate dz/dt = v(t) to obtain z(t) from

z(t) t
/ dr' = / v(t)dt'. (2.20)

0 to

Note: If you want to find v as a function of z, v(z), you should write a as

v(dv/dz) and integrate
() o do! z
m = [ dr'. 2.21
/vo F(v') /zo ( )

You may then obtain z(¢) from eq. (2.17), if desired.
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When dealing with the initial conditions, we have chosen to put them in the
limits of integration above. If you wish, you can perform the integrals without any
limits, and just tack on a constant of integration to your result. The constant is
then determined by the initial conditions.

Again, you do not have to memorize the above three procedures, because there
are variations, depending on what you want to solve for. All you have to remember
is that Z can be written as either dv/dt or vdv/dz. One of these will get the job
done (the one that makes only two out of the three variables, t,x,v, appear in your
differential equation). And then be prepared to separate variables and integrate as
many times as needed.

a is dv by dt.

Is this useful? There’s no guarantee.

If it leads to “Oh, heck!”’s,

Take dv by dz,

And then write down its product with v.

Example 1 (Gravitational force): A particle of mass m is subject to a constant
force FF = —mg. The particle starts at rest at height h. Since this constant force falls
into all of the above three categories, we should be able to solve for the motion in two
ways.

(a) Find y(t) by writing a as dv/dt.
(b) Find y(t) by writing a as vdv/dy.
Solution:

(a) F = ma gives dv/dt = —g. Integrating this yields v = —gt + C, where C is a
constant of integration. The initial condition v(0) = 0 says that C' = 0. Hence,
dy/dt = —gt. Integrating this and using y(0) = h gives

1.
y=h-— 5gtz. (2.22)

(b) F = ma gives vdv/dy = —g. Separating variables and integrating gives v*/2 =
—gy + C. The initial condition v(0) = 0 yields v?/2 = —gy + gh. Therefore,

v = dy/dt = —/2g(h — y) (we have chosen the negative square root, because
the particle is falling). Separating variables then gives
—_— = dt. 2.23
i = | (223)

This yields 2v/h —y = +/2gt, where we have used the initial condition y(0) = h.
Hence, y = h — gt?/2, in agreement with part (a) (which was clearly the simpler
method for this problem).
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Example 2 (Dropped ball): A beach-ball is dropped from rest at height h.
Assume® that the drag force from the air is F; = —fv. Find the velocity and height
as a function of time.

Solution: For simplicity in future formulas, let’s write the drag force as Fy =
—pv = —maw. Taking upward to be the positive y direction, the force on the ball is
then

F =—mg — maw. (2.24)

(If we had chosen downward to be the positive direction, then the force would have
been mg — maw.) Note that v is negative here, so the drag force points upward, as it
should. Writing F = m dv/dt, and separating variables, gives

v(t) i t
/ ﬁ = / dt'. (2.25)
0 -9 0

The integration yields In(1 + av/g) = —at. Exponentiation then gives
o(t) = —% (1—e o). (2.26)

Integrating dy/dt = v(t) to obtain y(t) yields

y(t) t
d '=—2/ 1— et dt'. 2.2
/h y =2 0( eo) (2.27)

yt)=h-2< (t - é(l - e—at)> . (2.28)

Therefore,

REMARKS:

(a) Let’s look at some limiting cases. If ¢ is very small (more precisely, if at < 1), then

we can use e~ ® = 1 —x + x?/2 to make approximations to leading order in t. You can
show that eq. (2.26) gives v(t) = —gt (as it should, since the drag force is negligible
at the start). And eq. (2.28) gives y(t) = h — gt>/2, as expected.
We may also look at large t. In this case, e™*' is essentially 0, so eq. (2.26) gives
v(t) = —g/a. (This is the terminal velocity. Its value makes sense, because it is
the velocity for which the force —mg — maw vanishes.) And eq. (2.28) gives y(t) =
h — (g/a)t + g/a®. Apparently, for large t, g/a?® is the distance our ball lags behind
another ball which starts out already at the terminal velocity, g/a.

(b) The speed of the ball obtained in eq. (2.26) depends on «, which was defined in the
coefficient of the drag force, Fy = —mav. We explicitly wrote the m here just to make
all of our formulas look a little nicer, but it should not be inferred that the speed of
the ball is independent of m. The coefficient ma depends (in some complicated way)
on the cross-sectional area, A, of the ball. Therefore, & o« A/m. Two balls of the same
size, one made of lead and one made of styrofoam, will have the same A but different
m’s. Hence, their o’s will be different, and they will fall at different rates.

For heavy objects in a thin medium such as air, « is small, and so the drag effects
are not very noticeable over short distances.® Massive objects fall at roughly the same
rate. If the air were a bit thicker, different objects would fall at noticeably different
rates, and maybe it would have taken Galileo a bit longer to come to his conclusions.

5The drag force is roughly proportional to v as long as the speed is fairly slow (up to, say, 50 m/s,
but this depends on various things). For larger speeds, the drag force is roughly proportional to v2.

5In such a scenario, we would more likely have F' o v2, but the general conclusion about small
effects still holds.
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What would you have thought, Galileo,

If instead you dropped cows and did say, “Oh!

To lessen the sound

Of the moos from the ground,

They should fall not through air, but through mayo!” &

2.4 Projectile motion

Consider a ball thrown through the air (not necessarily vertically). Let z and y be
the horizontal and vertical positions, respectively. The force in the z-direction is
F, =0, and the force in the y-direction is ¥, = —mg. So F = ma gives

=0, and J= —g. (2.29)

Note that these two equations are “decoupled”. That is, there is no mention of y
in the equation for #, and vice-versa. The motions in the z- and y-directions are
therefore completely independent.

If the initial position and velocity are (X,Y) and (V,,V}), then we can easily
integrate egs. (2.29) to obtain

x(t) = Vza
y(t) = Vy—gt. (2.30)

Integrating again gives
z(t) = X+ Vi,

1
y(t) = Y +Vyt— §gt2. (2.31)
These equations for the speeds and positions are all you need to solve a projectile
problem. (Of course, we’ve neglected air resistance here. Things get a bit compli-
cated when that is included.)

Example (Throwing a ball):

(a) For a given initial speed, at what inclination angle should a ball be thrown so
that it travels the maximum horizontal distance? Assume that the ground is
level, and that the ball is released from ground level.

(b) What is the optimal angle if the ground is sloped upward at an angle 8 (or
downward, if 8 is negative)?

Solution:

(a) Let the inclination angle be 6, and let the initial speed be v. Then the horizontal
speed is (always) v, = vcos#, and the initial vertical speed is v, = vsin#.
Let d be the horizontal distance traveled, and let ¢ be the time in the air. Then
the vertical speed is zero at time ¢/2, so eq. (2.30) says that v, = g(¢/2). Hence,
t = 2vy/g. (Alternatively, the time of flight can be found from eq. (2.31), which
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says that the ball returns to ground level when v,t = gt?/2.) Eq. (2.31) says
that d = v,t. Using t = 2v, /g in this gives

2 2 2
d= 2% _ 7}—(2 sinf cos ) = Y sin26. (2.32)
g g g
The sin 260 factor has a maximum at
T
= —. 2.
6=7 (2:33)

The maximum distance traveled is then d = v?/g.
For § = /4, you can show that the maximum height achieved is v?/4g. This
may be compared to the maximum height of v?/2g (as you can show) if the ball
is thrown straight up.
Note that any possible distance you might wish to find must be proportional to
v?/g, by dimensional analysis. The only question is what the numerical factor
is.

(b) If the ground is sloped at an angle 3, then the equation for the line of the ground
is

y = (tan B)z. (2.34)

The path of the ball is given in terms of ¢ by

z = (vcosb)t, and y = (vsin )t — %gtz. (2.35)

The ¢ for which y = (tan )z (that is, the place where that path of the ball
intersects the line of the ground) may be solved for to obtain

t= %(sinﬁ — tan 3 cos ). (2.36)

(There is, of course, also the solution ¢t = 0.) Plugging this into our expression
for z in eq. (2.35) gives

202 9
T = 7(s1n6?cos0 — tan B cos® §). (2.37)

We must now maximize this value for z (which is the same as maximizing
the distance along the slope). Taking the derivative with respect to 6 gives
(with the help of the double-angle formulas, sin 20 = 2sin cosf and cos26 =
cos? @ —sin? f) tan B = — cot 26 = — tan(m/2 —26). Therefore, 8 = —(7/2 —26),
so we have 1 .

0_5(5+§). (2.38)
In other words, the throwing angle should bisect the angle between the ground
and the vertical. For § = m/2, we have § = /2, as it should be. For 8 = 0, we

have § = 7 /4, as found in part (a). For 8 = —m/2, we have § = 0, which makes
sense.

The classic demonstration of the independence of the z- and y-motions is the
following. Fire a bullet horizontally (or, preferably, just imagine firing a bullet
horizontally), and at the same time drop a bullet from the height of the gun. Which
bullet will hit the ground first? (Neglect air resistance, and the curvature of the
earth, etc.) The answer is that they will hit the ground at the same time, because
the effect of gravity on the two y-motions is exactly the same, independent of what
is going on in the z-direction.
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2.5 Motion in a plane, polar coordinates

y When dealing with problems where the motion lies in a plane, it is often conve-
nient to work with polar coordinates, r and 6. These are related to the cartesian

] coordinates by (see Fig. 2.5)
X
T =1 cosb, and y = rsiné. (2.39)
Figure 2.5 .. . . .
The goal of the present section is to determine what F = ma = m¥ looks like when
written in terms of polar coordinates.

At a given position r in the plane, the basis vectors in polar coordinates are 1,
which is a unit vector pointing in the radial direction; and @, which is a unit vector
pointing in the counterclockwise tangential direction. In polar coords, a general
vector may therefore be written as

r =rt. (2.40)
y Note that the directions of the & and @ basis vectors depend, of course, on r.
sind The goal of this section is to find ¥. So, in view of eq. (2.40), we must get a
: ) handle on the time derivative of & (and we’ll eventually need the derivative of 6,
L W20 2 : also). In contrast with the cartesian basis vectors (X and y), the polar basis vectors
5 c0s (r and @) do indeed change as a point moves around in the plane. We may find
X :
and 6 in the following way. In terms of the cartesian basis, Fig. 2.6 shows that
Tt = cosfx + sinfy,
6 = —sinfx+ cosfy. (2.41)
Figure 2.6
Taking the time derivative of these equations gives
f = —sinf0x + cos 99}7,
6 = —cos00x — sin00y. (2.42)

Using egs. (2.41), we then arrive at the nice clean expressions,

. A

r =60, and 9 = —0r. (2.43)

These relations are fairly evident from viewing what happens to the basis vectors
as r moves a tiny distance in the tangential direction.
We may now start differentiating eq. (2.40). One derivative gives

P o= if+4rt
= 7f 4 r60. (2.44)
This is quite clear, since 7 is the speed in the radial direction, and ?”9' is the speed

in the tangential direction (which is often written as wr, where w = @ is the angular
speed, or ‘angular frequency’).”

"For 76 to be the tangential speed, we must of course measure ¢ in radians and not degrees. Then
r6 is by definition the distance along the circumference; so 78 is the speed along the circumference.



2.5. MOTION IN A PLANE, POLAR COORDINATES I11-13

Differentiating eq. (2.44) then gives

P o= i+ 700 + 160 + o8
= #t+7(00) + 700 + r68 + ro(—6r)
= (F—r0))i+ (10 +270)0 (2.45)

Finally, equating m¥ with F = F.t + Fy0 gives the radial and tangential forces as

F, = m(i —rb?),
Fy = m(rf + 2i). (2.46)

Exercise 7 gives a slightly different derivation of these equations.
Let’s look at each of the four terms on the right-hand sides of eqgs. (2.46).

e The mf# term is quite intuitive. For radial motion, it simply states that F' = ma
along the radial direction.

e The mrf term is also quite intuitive. For circular motion, it states that F' = ma
along the tangential direction.

e The —mrf? term is also fairly clear. For circular motion, it says that the
radial force is —m(r8)?/r = —mwv?/r, which is the familiar term that causes
the centripetal acceleration.

e The 2m76 term is not so obvious. It is called the Coriolis force. There are
various ways to look at this term. One is that it exists in order to keep the
angular momentum conserved. We’ll have much more to say about this in
Chapter 9.

Example (Circular pendulum): A mass hangs from a string of length £. Con-
ditions have been set up so that the mass swings around in a horizontal circle, with
the string making an angle of § with the vertical (see Fig. 2.7). What is the angular
frequency, w, of this motion?

Solution: The mass travels in a circle, so the horizontal radial force is F, = Figure 2.7

mré? = mrw? (with r = £sinf), directed radially inward. The forces on the mass
are the tension in the string, T, and gravity, mg (see Fig. 2.8). There is no acceler-
ation in the vertical direction, so F' = ma in the vertical and radial directions gives,
respectively,

Tcosf = mg,
Tsind = m(€sinf)w?. (2.47) mg

Solving for w gives Figure 2.8

_ g
w= ”ECOSG' (2.48)

Note that if § ~ 0, then w ~ /g/¢, which equals the frequency of a plane pendulum
of length £. And if 8 =~ 90°, then w — 00, as it should.
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2.6 Exercises

Section 2.2: Free-body diagrams

M
M2 1. A Peculiar Atwood’s Machine
ma® Consider an Atwood’s machine (see Fig. 2.9) consisting of N masses, M,
ﬂ M/2, M/4, ..., M/2N~1. (All the pulleys and strings are massless, as usual.)
M2Vt ? N—1 .
(a) Put a mass M/2 at the free end of the bottom string. What are the
Figure 2.9 accelerations of all the masses?
(b) Remove the mass M/2V~! (which was arbitrarily small, for very large
N) that was attached in part (a). What are the accelerations of all the
masses, now that you’ve removed this infinitesimal piece?
2. Accelerated Cylinders x*x
Three identical cylinders are arranged in a triangle as shown in Fig. 2.10,
with the bottom two lying on the ground. The ground and the cylinders are
frictionless.
Figure 2.10 You apply a constant horizontal force (directed to the right) on the left cylin-

der. Let a be the acceleration you give to the system. For what range of a
will all three cylinders remain in contact with each other?

Section 2.3: Solving differential equations

3. —bw? force
A particle of mass m is subject to a force F(v) = —bv?. The initial position
is 0, and the initial speed is vy. Find z(t).

4. —kx force *x
A particle of mass m is subject to a force F/(z) = —kz. The initial position is
0, and the initial speed is vy. Find z(t).

5. kx force **
A particle of mass m is subject to a force F(x) = kz. The initial position is
0, and the initial speed is vy. Find z(t).

Section 2.4: Projectile motion

6. Newton’s apple *

Newton is tired of apples falling on his head, so he decides to throw a rock
at one of the larger and more formidable-looking apples positioned directly
above his favorite sitting spot. Forgetting all about his work on gravitation
L (along with general common sense), he aims the rock directly at the apple (see
Fig. 2.11). To his surprise, however, the apple falls from the tree just as he

Figure 2.11
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releases the rock. Show that the rock will hit the apple.®

Section 2.5: Motion in a plane, polar coordinates
7. Derivation of F,. and Fy #**

In cartesian coords, a general vector takes the form

r = xXx+yy
= rcosfx + rsinfy. (2.49)
Derive egs. (2.46) by taking two derivatives of this expression for r, and then

using egs. (2.41) to show that the result may be written in the form of eq.
(2.45). (Unlike 1 and 6, the vectors x and y do not change with time.)

8This problem suggests a way in which William Tell and his son might survive their ordeal if
they were plopped down on a planet with unknown gravitational constant (provided the son isn't
too short or g isn’t too big).



0

Figure 2.12

Mg M

Figure 2.13

M

My, M

Figure 2.14

Figure 2.15

N=3
Figure 2.16

I1-16 CHAPTER 2. USING F =MA

2.7 Problems

Section 2.2: Free-body diagrams

1. Sliding plane #x*x

A block of mass m is held motionless on a frictionless plane of mass M and
angle of inclination 6 (see Fig. 2.12). The plane rests on a frictionless hori-
zontal surface. The block is released. What is the horizontal acceleration of
the plane?

2. Sliding down a plane *x

(a) A block slides down a frictionless plane from the point (0,y) to the point
(b,0), where b is given. For what value of y does the journey take the
shortest time? What is this time?

(b) Answer the same questions in the case where there is a coefficient of
kinetic friction, u, between the block and the plane.

3. Atwood’s machine *x

(a) A massless pulley hangs from a fixed support. A string connecting two
masses, M; and Mo, hangs over the pulley (see Fig. 2.13). Find the
accelerations of the masses.

(b) Consider now the double-pulley system with masses M;, Mo, and M3
(see Fig. 2.14). Find the accelerations of the masses.

4. Infinite Atwood’s machine *xx

Consider the infinite Atwood’s machine shown in Fig. 2.15. A string passes
over each pulley, with one end attached to a mass and the other end attached
to another pulley. All the masses are equal to M, and all the pulleys and
strings are massless.

The masses are held fixed and then simultaneously released. What is the
acceleration of the top mass?

(You may define this infinite system as follows. Consider it to be made of N
pulleys, with a non-zero mass replacing what would have been the (N + 1)st
pulley. Then take the limit as N — oo. It is not necessary, however, to use
this exact definition.)

5. Line of Pulleys =x

N + 2 equal masses hang from a system of pulleys, as shown in Fig. 2.16.
What is the acceleration of the masses at the end of the string?
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6. Ring of Pulleys *x

Consider the system of pulleys shown in Fig. 2.17. The string (which is a
loop with no ends) hangs over N fixed pulleys. N masses, m1, mo, ..., mn,
are attached to N pulleys which hang on the string. Find the acceleration of
each mass.

Section 2.3: Solving differential equations

7. Exponential force

A particle of mass m is subject to a force F(t) = me . The initial position
and speed are 0. Find z(t).

. Falling chain x*x

(a) A chain of length / is held on a frictionless horizontal table, with a length
1o hanging over the edge. The chain is released. As a function of time,
find the length that hangs over the edge. (Don’t bother with ¢ after the
chain loses contact with the table.) Also, find the speed of the chain right
when it loses contact with the table.

(b) Do the same problem, but now let there be a coefficient of friction u
between the chain and the table. (Assume that the chain initially hangs
far enough over the edge so that it will indeed fall when released.)

. Ball thrown upward *x**

A beach-ball is thrown upward with initial speed vg. Assume that the drag
force is F' = —maw. What is the speed of the ball, v, when it hits the ground?
(An implicit equation is sufficient.) Does the ball spend more time or less time
in the air than it would if it were thrown in vacuum?

Section 2.4: Projectile motion

10.

11.

12.

Throwing a ball from a cliff *x

A ball is thrown from the edge of a cliff of height h. At what inclination angle
should it be thrown so that it travels a maximum horizontal distance? Assume
that the ground below the cliff is level.

Redirected horizontal motion *

A ball falls from height h. It bounces off a surface at height y (with no loss in
speed). The surface is inclined at 45°, so that the ball bounces off horizontally.
What should y be so that the ball travels a maximum horizontal distance?

Redirected general motion x

A ball falls from height h. It bounces off a surface at height y (with no loss
in speed). The surface is inclined so that the ball bounces off at an angle of ¢
with respect to the horizontal. What should y and 6 be so that the ball travels
a maximum horizontal distance?

My m m
Figure 2.17
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13. Maximum length of trajectory *xx

A ball is thrown at speed v from zero height on level ground. Let 8y be the
angle at which the ball should be thrown so that the distance traveled through
the air is maximum. Show that 8y satisfies

1 +sin00)

1 =sinfyln (
cos 0y

(The solution is found numerically to be 6y =~ 56.5°.)

14. Maximum area under trajectory

A ball is thrown at speed v from zero height on level ground. At what angle
should the ball be thrown so that the area under the trajectory is maximum?

15. Bouncing ball *

A ball is thrown straight upward so that it reaches a height h. It falls down
and bounces repeatedly. After each bounce, it returns to a certain fraction
f of its previous height. Find the total distance traveled, and also the total
time, before it comes to rest. What is its average speed?
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2.8 Solutions

1. Sliding plane

Let F be the normal force between the block and the plane. Then the various F' = ma
equations (vertical and horizontal for the block, and horizontal for the plane) are

mg — Fcosf = may
Fsin0 = ma,
Fsing = MA,. (2.50)

(We’ve chosen positive a, and ay to be leftward and downward, respectively, and
positive A, to be rightward.)

There are four unknowns here (as,a,,A5,F), so we need one more equation. This
last equation is the constraint that the block remains in contact with the plane.
The horizontal distance between the block and its starting point on the plane is
(ay + A;)t?/2, and the vertical distance is a,t?/2. The ratio of these distances must
equal tan @ if the block is to remain on the plane. Therefore, we must have

ay

——— =tané. 2.51
3 A, tn (2.51)
Using egs. (2.50), this becomes
£ 0
= g m CES —— = tan6
s-sinf + 47 sinf
11 AN
= F=y (sinetane (— + —) + &> . (2.52)
m M m

The third of egs. (2.50) then yields A,, which may be written as

A _ Fsinf mgtan 6
M M(1+tan?6) +mtan’6 "

(2.53)

REMARKS: For given M and m, the angle §o which maximizes A, is found to be

tanfo = 4/ Mﬂim . (2.54)

If M <« m, then 6y = 0. If M > m, then 6y = 7/4.

In the limit M < m, we have A, =~ g/tan@. This makes sense, because m falls essentially
straight down, and the plane gets squeezed out to the right.

In the limit M > m, we have A, ~ g(m/M)tan8/(1 + tan® §) = g(m/M)sinfcosf. This
is more transparent if we instead look at ar, = (M/m)A.; = gsinfcosf. Since the plane is

essentially at rest in this limit, this value of a, implies that the acceleration of m along the
plane is essentially equal to a./cosf = gsin 6, as expected. &

2. Sliding down a plane

(a) Let 0 be the angle the plane makes with the horizontal. The component of
gravity along the plane in gsinf. The acceleration in the horizontal direction is
then a, = gsinf cosf. Since the horizontal distance is fixed, we simply want to
maximize a,. So § = w/4, and hence y = b.

The time is obtained from a,t?/2 = b, with a, = gsinfcosd = g/2. Therefore,

t =2./b/g.
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(b) The normal force on the plane is M g cos 8, so the friction force is uM g cos§. The
acceleration along the plane is therefore g(sin @ — u cos6), and so the acceleration
in the horizontal direction is a, = g(sinf — p cos ) cos§. We want to maximize
this. Setting the derivative equal to zero gives

(cos? @ — sin” @) + 2usinf cos§ = 0, = tan 20 = e (2.55)

For 4 — 0, this reduces to the answer in part (a). For yu — o0, we obtain
0 =~ /2, which makes sense.

To find ¢, we need to find a,,. Usingsin26 = 1/4/1 + p? and cos 20 = —u/+/1 + u?,

we have
a; = gsinfcosh — pugcos? 6
_ gsin20  pg(1 + cos26)
B 2 2
= g( 1+ 2 — p). (2.56)

(For u — oo, this behaves like a, ~ g/(4u).) Therefore, a,t?/2 = b gives

‘o 2 24/b/g
o VIt —p

2v/b/g\/ V1 + p? + p. (2.57)

(For 1 — oo, this behaves like t & 21/2ub/g.)

3. Atwood’s machine

(a) Let T be the tension in the string. Let a be the acceleration of M> (with
downward taken to be positive). Then —a is the acceleration of M;. So we have

Mlg—T = Ml(—(l),
Mgg—T = Mga. (258)

Subtracting the two equations yields

My — M,

=g—. 2.59
“ gM1+M2 ( )

As a double-check, this has the correct limits when My > My, My < My, and
M5 = My, namely a =& g, a & —g, and a = 0, respectively.

We may also solve for the tension, T' = 2M; My /(My + Ms). If My = M2 =M,
then T'= Mg, as it should. If My < Ms, then T = 2M, g, as it should (because
then the net upward force on M, is Mg, so its acceleration equals g upwards,
as it must, since M- is essentially in free-fall).

(b) The key here is that since the pulleys are massless, there can be no net force on
them, so the tension in the bottom string must be half of that in the top string.
Let these be T/2 and T, respectively. Let a, be the acceleration of the bottom
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pulley, and let a be the acceleration of M3 relative to the bottom pulley (with
downward taken to be positive). Then we have

Mlg -T = Ml(_ap)a
T
Msg - 3 Ms(ap — a),
T
Msg — 3 = Ms(a, + a). (2.60)

Solving for a, and a gives

o = 4MyMsz — My (My + Ms) 2My (M3 — Ms)
P

= , - . (261
I, M, + My (M + My)° O~ YT, + My (M, + ) OV

The accelerations of My and M3, namely a, — a and a, + a, are

4MsMs + M, (MQ — 3M3)
T AMM; + My (M; + Ms)
AMyMs + My (M; — 3M>)

= . 2.62
Gp +a J 4MyMs 4+ My (My + M) (2.62)

ap—a =

You can check various limits. One nice one is where M> is much less than both M; and M3.
The accelerations of Mi, M», and Ms are then

—ap = g, ap —a = —3yg, apta=y, (2.63)
(with downward taken to be positive).

4. Infinite Atwood’s machine
First Solution: Consider the following auxiliary problem.

Problem:  Two set-ups are shown in Fig. 2.18. The first contains a hanging mass
m. The second contains a hanging pulley, over which two masses, M; and M, hang.
Let both supports have acceleration a; downward. What should m be, in terms of
M; and Ms, so that the tension in the top string is the same in both cases?

Answer: In the first case, we have
mg —T = mas. (2.64)

In the second case, let a be the acceleration of M, relative to the support (with
downward taken to be positive). Then we have

T
Mg—5 = M;(as — a),
T
Mgg—g = Ms(as + a). (2.65)

Note that if we define ¢’ = g — a,, then we may write these three equations as

mg' = T,
T
Mlgl = E — Mla,
T
M2gl = —+ MQU/. (266)

2

llas

m
Ml

Figure 2.18

}as

M,
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The last two give 4M1Mag' = (M7 + M>)T. The first equation then gives

AM, M,

Note that the value of a; is irrelevant. (We effectively have a fixed support in a world
where the acceleration from gravity is g’.) This problem shows that the two-mass
system in the second case may be equivalently treated as a mass m, as far as the
upper string is concerned. W

Now let’s look at our infinite Atwood machine. Start at the bottom. (Assume that
the system has N pulleys, where N — 0.) Let the bottom mass be . Then the
above problem shows that the bottom two masses, M and z, may be treated as an
effective mass f(z), where

4x

T 14 (/M)
We may then treat the combination of the mass f(z) and the next M as an effective

mass f(f(z)). These iterations may be repeated, until we finally have a mass M and
a mass fN~1(z) hanging over the top pulley.

f(z) (2.68)

We must determine the behavior of f¥(z), as N — co. The behavior is obvious by
looking at a plot of f(z) (which we’ll let you draw). (Note that z = 3M is a fixed
point of f,i.e., f(3M) = 3M.) It is clear that no matter what x we start with, the
iterations approach 3M (unless, of course, z = 0). So our infinite Atwood machine is
equivalent to (as far as the top mass is concerned) just the two masses M and 3M.

We then easily find that the acceleration of the top mass equals (net downward
force)/(total mass) = 2Mg/(4M) = g/2.

As far as the support is concerned, the whole apparatus is equivalent to a mass 3M.
So 3M g is the weight the support holds up.

Second Solution: If the gravity in the world were multiplied by a factor 7, then
the tension in all the strings would likewise be multiplied by 7. (The only way to
make a tension, i.e., a force, is to multiply a mass times g.) Conversely, if we put the
apparatus on another planet and discover that all the tensions are multiplied by 7,
then we know the gravity there must be ng.

Let the tension in the string above the first pulley be T'. Then the tension in the string
above the second pulley is T'/2 (since the pulleys are massless). Let the acceleration
of the second pulley be a,z. Then the second pulley effectively lives in a world where
the gravity is g — apz. If we imagine holding the string above the second pulley and
accelerating downward at ape (so that our hand is at the origin of the new world),
then we really haven’t changed anything, so the tension in this string in the new world
is still T'/2.

But in this infinite setup, the system of all the pulleys except the top one is the same
as the original system of all the pulleys. Therefore, by the arguments in the first

paragraph, we must have
T T/2
— = 4 (2.69)
g g — ap2
Hence, a2 = g/2. (Likewise, the relative acceleration of the second and third pulleys
is g/4, etc.) But ape is also the acceleration of the top mass. So our answer is g/2.

Note that T = 0 also makes eq. (2.69) true. But this corresponds to putting a mass
of zero at the end of a finite pulley system.
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5. Line of Pulleys

Let m be the common mass, and let T' be the tension in the string. Let a be the
acceleration of the end masses, and let a' be the acceleration of the other masses (with
downward taken to be positive). Then we have

T — mg = ma,
2T —mg = ma'. (2.70)

The string has fixed length, therefore

N(2d')+a+a=0. (2.71)
Eliminating T from eqgs. (2.70) gives a’ = 2a + g. Combining this with eq. (2.71)
then gives
-9
a=—". 2.72
o (272)
For N = 0 we have a = 0. For N = 1 we have a = —g/3. For larger N, a increases in
magnitude until it equals —g/2 for N — oo.
6. Ring of Pulleys
Let T be the tension in the string. Then F' = ma for m; gives
2T — m;g = m;a;, (2.73)

with upward taken to be positive.

But the string has a fixed length. Therefore, the sum of all the displacements of the
masses is zero. Hence,

CL]_+GQ+"'+U/N:0- (274:)
If we divide eq. (2.73) by m;, and then add the N such equations together, we then
obtain
1 1 1
2T(—+—+---+—>—Ng:0. (2.75)
miy mo mn

Substituting this value for T into (2.73) gives

N
a; =g —-1]. (2.76)

1 1 1
mi<m—1+m—2+"'+m)

If all the masses are equal, then all a; = 0. If my; = 0 (and all the others are not 0), then
ar = (N — 1)g, and all the other a; = —g.

7. Exponential force

We are given & = e %, Integrating this w.r.t. time gives v(t) = —e /b + A.

Integrating again gives z(t) = e =% /b? + At + B. The initial conditions are 0 = v(0) =
—1/b+ A and 0 = z(0) = 1/b* + B. Therefore,

1

(2.77)

S e

For t — oo, the speed is v — 1/b. The particle eventually lags a distance 1/b* behind a
particle that starts at the same position but with speed v = 1/b.
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8. Falling chain

(a)

Let y(t) be the length hanging over the edge at time t. Let the density of the
chain be p. Then the total mass is M = pf, and the mass hanging over the edge
is py. The downward force on the chain (that isn’t countered by a normal force
from the table) is therefore (py)g, so F = ma gives

pgy = plij =  §= %y- (2.78)

The solution to this equation is

y(t) = Ae™ + Be ¢, where a = % (2.79)

Taking the derivative of this to obtain g(t), and using the given information that
9(0) = 0, we find A = B. Using y(0) = yo, we then find A = B = y9/2. So the
length that hangs over the edge is

y(t) = y?O (eat + e_at) = yo cosh(at). (2.80)
And the speed is
. _ aYo at —at) — 3
gt) = - (e —e ) = ayp sinh(at). (2.81)

The time T that satisfies y(T") = £ is given by £ = yg cosh(aT'). Using sinhz =

Vcosh?z — 1, we find that the speed of the chain right when it loses contact
with the table is

§(T) = ayo sinh(aT) = ay /2 — y2 = \/9l\/1 — 12, (2.82)

where 19 = yo// is the initial fraction hanging over the edge. If 19 & 0, then the
speed at T is /g€ (which is clear, since the center-of-mass falls a distance £/2)
Also, you can show that T goes to infinity logarithmically as 1o — 0.

The normal force on the table is gp(¢ — y), so the friction force opposing gravity
is pgp(€ — y). Therefore, F = ma gives

pgy — ugp(l —y) = plj. (2.83)

This equation is valid only if the gravitational force is greater than the friction
force (i.e., the left-hand side is positive), otherwise the chain just sits there.
The left-hand side is positive if y > pl/(1 + p). Let us define a new variable
z=y—pl/(1+ p). (So our ending point, y = £, corresponds to z = £/(1 + u).)
Then eq. (2.83) becomes

5= z%(l + ). (2.84)

At this point, we can either repeat all the steps in part (a), with slightly different
variables, or we can just realize that we now have the exact came problem, with
the only change being that ¢ has turned into £/(1 + p). So we have

1
z2(t) = 2zgcosh(a't), where o = m,

/
= 40 = (w5 costlan) + 15 (2.85)

1+p 1+p
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And the final speed is

9(T") = 2(T") = o' 29 sinh(aT") = a'\/(l ne 2= \/1 i 2
(2.86)
where nj = 20/[¢/(1+ p)] is the initial ‘excess fraction’. That is, it is the excess

length above the minimal length, p€/(1 4+ u), divided by the maximum possible
excess length, £/(1+ p). If 5y ~ 0, then the speed at T" is \/g€/(1 + p).

9. Ball thrown upward

Let’s take upward to be the positive direction. Then on the way up, the force is

F = —mg — mav. (v is positive here, so the drag force points downward, as it
should.)

The first thing we must do is find the maximum height, h, the ball reaches. You can
use the technique in egs. (2.19) and (2.20) to solve for v(t) and then y(¢). But it is
much simpler to use eq. (2.21) to solve for v(y), and to then take advantage of the
fact that we know the speed of the ball at the top, namely zero. Eq. (2.21) gives

O vdv
/ e /dy (2.87)

Write v/(g + aw) as [1 — g/(g + av)]/a and integrate to obtain

O _ I (1 + %) =h. (2.88)
a « g
On the way down, the force is again F = —mg — mav. (v is negative here, so the

drag force points upward, as it should.) If vy is the final speed (we’ll take vy to be a
positive number, so that the final velocity is —vy), then eq. (2.21) gives

Y vdv 0
= — dy. 2.89
| e (2.89)
This gives
vi g avy
——— —=In{l—— ) =h. 2.90
a o ( g ) (2.90)

(This is the same as eq. (2.88), with vg replaced by —vy.)

Equating the expressions for h in eqs. (2.88) and (2.90) gives an implicit equation for
vy in terms of vy,

(2.91)

au
Vo —H)f:%ln (u)

9 — avy

REMARKS: Let’s find approximate values for h in eqs. (2.88) and (2.90), in the limit of small
a (which is the same as large g). More precisely, let’s look at the limit awvo/g < 1. Using

In(1+z)=z—2?/2+2%/3— -, we find
2 3 2 3
v Qg YVr , QYr
- — = d h~ =+ —. 2.92
29 32 O 29 " 392 (2.92)

The leading terms, v?/2g, are as expected.
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For small o, we may find vy in terms of vo. Equating the two expressions for h in eq. (2.92)
(and using the fact that vy = vo) gives

2
e — szt =] %(1}8 +v?)
2a
= (vo +vf)(vo —vf) = 5( o +v})
4o 3
= 2vo(vo —vf) = —u
f 39 0
= v —vf = 2av2
o — ~ 22
f 39 0
2
= vy R U — %vg (2.93)

We may also make approximations for large a (or small g). In this case, eq. (2.88) gives
h = vo/a. And eq. (2.90) gives vy = g/a (because the log term must be a very large
negative number, in order to yield a positive k). There is no way to relate vy and h is this
case, because the ball quickly reaches the terminal velocity of g/, independent of h. &

Let’s now find the time it takes for the ball to go up and to go down. If T3 is the
time of the upward path, then integrating eq. (2.19), with F = —mg — maw, from
the start to the apex gives

1
T, = ~In (1 + %) . (2.94)
Qa g
Likewise, the time T, for the downward path is
1 auy
To=——In{1—-—). (2.95)
@ g
Therefore,
1
T, +Ty = ~1In (m) : (2.96)
@ g—avy
Using eq. (2.91), we have
T, +T, = 21Y (2.97)

This is shorter than the time in vacuum, namely 2v,/g, because vy < vy.

REMARKS: The fact that the time here is shorter than the time in vacuum isn’t all that
obvious. On one hand, the ball doesn’t travel as far in air as it would in vacuum (so you
might think that T1 + T» < 2v0/g). But on the other hand, the ball moves slower in air (so
you might think that 71 + T> > 2v/g). It isn’t obvious which effect wins, without doing a
calculation.

For any «, you can easily use eq. (2.94) to show that 71 < vo/g. T> is harder to get a handle
on, since it is given in terms of vy. But in the limit of large o, the ball quickly reaches
terminal velocity, so we have Tb = h/vs = (vo/a)/(g/a) = vo/g. Interestingly, this is the
same as the downward (and upward) time for a ball thrown in vacuum.

The very simple form of eq. (2.97) suggests that there should be a cleaner way to calculate
the total time of flight. And indeed, if we integrate mdv/dt = —mg — mav with respect
to time on the way up, we obtain —vo = —gT1 — ah (because fvdt = h). Likewise, if
we integrate mdv/dt = —mg — mav with respect to time on the way down, we obtain
—vy = —gTs + ah (because [vdt = —h). Adding these two results gives eq. (2.97). This
procedure only worked, of course, because the drag force was proportional to v. &
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10. Throwing a ball from a cliff

11.

Let the angle be 8, and let the speed be v. Then the horizontal speed is v, = v cos®,
and the initial vertical speed is v, = vsiné.

The time it takes for the ball to hit the ground is given by (vsinf)t — gt?/2 = —h.

Therefore,
2gh
t:g(sin0+\/Sin20+a>, WhereaE%- (2.98)
g

(The other solution for ¢ corresponds to the ball being thrown backwards down
through the cliff.) The horizontal distance traveled is d = (v cos6)t, so

2
d="Lcost (sina +Vsin20 + a) . (2.99)

9

We must maximize this function d(6). Taking the derivative, multiplying through by
V/sin? 0 + a, and setting the result equal to zero, gives

(cos® § — sin® 0)V'sin® § + a = sinf(a — (cos® 6 — sin®f)). (2.100)

Squaring, simplifying, and using cos? § = 1 — sin® 6, gives

sinf =

1 1
= . 2.101
V2+a /24 2gh/v? ( )

This is the optimal angle. Plugging this into eq. (2.99) gives a maximum distance of

2 2 2 h
dinax = %\/1+az %\/1+f—2. (2.102)

If h = 0, then we obtain the result of the example in Section 2.4. If h — o0 or v — 0,
then € ~ 0, which makes sense.

Redirected horizontal motion

First Solution: Let v be the speed right after the bounce (which is the same
as the speed right before the bounce). Integrating mv dv/dy = —mg gives mv?/2 =
mg(h — y) (where the constant of integration has been chosen so that v = 0 when
y = h). This is simply the conservation-of-energy statement. So we have

v=1/2g9(h—vy). (2.103)

The vertical speed is zero right after the bounce, so the time it takes to hit the ground
is given by gt?/2 = y. Hence t = /2y/g. So the horizontal distance, d, traveled is

d=vt =2y/y(h —y). (2.104)

Taking a derivative, we see that this function of y is maximum at

=, 2.105
y=5 ( )

The corresponding value of d is dy,ax = h.

Second Solution:  Assume that the greatest distance, dyp, is obtained when y = yq
(and let the speed at yo be wp).
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Consider the situation where the ball falls all the way down to y = 0 and then bounces
up at an angle such that when it reaches the height yg, it is traveling horizontally.
When it reaches the height yo, the ball will have speed vg (by conservation of energy,
which will be introduced in Chapter 4, but which you’re all familiar with anyway), so
it will travel a horizontal distance dy from this point. The total horizontal distance
traveled is therefore 2dy.

So to maximize dy, we simply have to maximize the horizontal distance in this new
situation. From the example in Section 2.4, we want the ball to leave the ground at a
45° angle. Since it leaves the ground with speed 1/2gh, one can easily show that such
a ball will be traveling horizontally at a height y = h/2, and it will travel a distance
2dy = 2h. Hence, yo = h/2, and dy = h.

12. Redirected general motion

First Solution: = We will use the results of Problem 10, namely egs. (2.102) and
(2.101), which say that an object projected from a height y at speed v travels a
maximum distance of

d= SV (2.106)

and the optimal angle yielding this distance is

snf=—— 1 (2.107)

V2 + 2gh/v?

In the problem at hand, the object is dropped from a height h, so conservation of
energy (or integration of mwv dv/dy = —myg) says that the speed at height y is

v=1/29(h—1y). (2.108)

Plugging this into eq. (2.106) shows that the maximum horizontal distance, as a
function of y, is

dmax(y) = 2v/h(h —y). (2.109)

This is clearly maximum at y = 0, in which case the distance is dnax = 2h. Eq.
(2.107) then gives the associated optimal angle as § = 45°.

Second Solution: Assume that the greatest distance, dy, is obtained when y =
yo # 0 and 6 = 6y (and let the speed at yo be vg). We will show that this cannot
be the case. We will do this by explicitly constructing a situation yielding a greater
distance.

Consider the situation where the ball falls all the way down to y = 0 and then bounces
up at an angle such that when it reaches the height yo, it is traveling at an angle 6
with respect to the horizontal. When it reaches the height yo, the ball will have
speed vy (by conservation of energy), so it will travel a horizontal distance dg from
this point. But the ball traveled a nonzero horizontal distance on its way up to the
height yo. We have therefore constructed a situation yielding a distance greater than
dp. Hence, the optimal setup cannot have yo # 0. Therefore, the maximum distance
must be obtained when y = 0 (in which case the example in Section 2.4 says that the
optimal angle is § = 45°).

If you want the ball to go even further, simply dig a (wide enough) hole in the ground
and have the ball bounce from the bottom of the hole.
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13. Maximum length of trajectory

14.

The coordinates are given by x = (vcosf)t and y = (vsin )t — gt? /2. Eliminating ¢
gives
gz
202 cos? 0
The length of the arc is twice the length up to the maximum. The maximum occurs
at t = (v/g)sin®, and hence z = (v?/g) sinf cosf. So the length of the arc is

y = (tané)z (2.110)

L

(v%/g)sin f cos 0
2/ V1+ (dy/dz)? dzx
0

(v%/g)sin f cos §
= 2/ V/1+ (tan 8 — gz /v? cos? 6)?2 dz. (2.111)
0

Letting 2z = tan @ — gz /v? cos® 6, we obtain

22 20 tan 6
[ = Z2vcesv V14 22dz

g 0
202 cos26 1 tan @
= %i(z\/l—}—zz—f-ln(z—}— 1+22))
0
2 1+ siné
= ”—(sin9+cos201n(ﬂ>>. (2.112)
g cosf

(As a double-check, some special cases are L =0 at § = 0, and L = v?/g at § = 90°,
as one can explicitly verify.) Taking the derivative to find the maximum, we have

1 . 2 1 . .
0= cosf — 2cosfsingln [ LT sin 6 0528 cos.6’ cos? 0 + (1 +sinf) sin 6
0s 6 1+siné cos2 6
(2.113)
This reduces to
1+siné

1=sinf1 _ 2.114
sin § In ( py ) , ( )

as was to be shown.

REMARK: The possible trajectories are shown in Fig. 2.19. Since it is well-known that
6 = 45° provides the maximum horizontal distance, it is clear from the figure that the
By yielding the arc of maximum length must satisfy 8o > 45°. The exact angle, however,
requires a detailed calculation. &

Maximum area under trajectory

The coordinates are given by = (vcosf)t and y = (vsin®)t — gt*/2. The time in
the air is T' = 2(vsin#)/g. The area under the trajectory is

Tmax
/ ydz
0

2vusinf/g
= / ((v sin0)t — gt2/2)v cos @ dt
0

A

4

2
= é sin® § cos 6. (2.115)

9=45°

path )

Figure 2.19
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Taking a derivative, we find that the maximum occurs when tan = v/3, i.e.,

9 = 60°. (2.116)
The maximum area is then Ap. = v/3v*/8¢%. (By dimensional analysis, we know
that it has to be proportional to v*/g?.)

15. Bouncing ball

The ball travels 2h during the first up-and-down journey. It travels 2hf during the
second, then 2hf? during the third, and so on. Therefore, the total distance traveled
is

D

2h(1+ f+ 2+ 2 +--)

2h
= 5 (2.117)
The time it takes to fall down during the first up-and-down is obtained from h = gt2/2.
So the time for the first up-and-down is 2¢ = 24/2h/g. The time for the second up-
and-down will likewise be 24/2(hf)/g. Each successive time decreases by a factor of
v/f. The total time is therefore

2
T = 2 —h(1+f1/2+f1+f3/2+---)
g
2h 1
= 24f/——7F. 2.118
91-VFf (2:118)
(Note that if f is exactly equal to 1, then the summations of the above series’ are not

valid.)

The average speed

D  \/gh/2
T+ T (2.119)

REMARK: For f ~ 1, the average speed is roughly half of the average speed for f =~ 0. This
may seem somewhat counterintuitive, because in the f ~ 0 case the ball slows down far
sooner than in the f =~ 1 case. But the point is that the f =~ 0 case consists of essentially
only one bounce, and the average speed for that bounce is the largest of any bounce. Both
D and T are smaller for f = 0 than for f ~ 1; but 7' is smaller by a larger factor. &
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