Chapter 1

Statics

Before reading any of the text of this book, you should read Appendices
B and C. The material discussed there (dimensional analysis, checking
limiting cases, etc.) is EXTREMELY important. It’s fairly safe to say
that an understanding of these topics is absolutely necessary for an un-
derstanding of physics. And they make the subject a lot more fun, too!

The material in this chapter should be mainly review. As such, the text here will
be relatively short. This is an ‘extra’ chapter. Its main purpose is that it provides
me with an excuse to give you some neat statics problems. Try as many as you like,
but don’t go overboard and spend too much time with them; more important and
relevant material will soon be at hand. If there is any chapter that you might want
to skim, this is the one.

1.1 Balancing forces

This chapter deals with ‘static’ situations, that is, ones where all the objects are
motionless. If an object is motionless, then F' = ma tells us that the total force
acting on it must be zero. (The converse is not true, of course. The total force can
be zero with a constant non-zero velocity. But we’ll deal only with static problems
here). The whole goal in a statics problem is to find out what the various forces have
to be so that there is zero net force acting on each object (and zero net torque, too;
but that’s the topic of the next section). Since a force is a vector, this goal involves
breaking the force up into its components. You can pick cartesian coordinates,
polar coordinates, or perhaps another set (it is usually clear from the problem which
system is best). Once this is done, you simply demand that the total force in each
direction is zero.

There are many different types of forces in the world, most of which are large-
scale effects of complicated things going on at smaller scales. For example, the
tension in a rope comes about from the chemical bonds that hold the molecules in
the rope together. In doing a simple mechanics problem, there is of course no need
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I-2 CHAPTER 1. STATICS

to analyze all the details of the forces taking place in the rope at the molecular scale.
You simply call whatever force there is a ‘tension’ and get on with the problem.
Four types of forces come up repeatedly when doing problems:

e Tension:

Tension is a general name for a force that a rope, stick, etc., exerts when it
is pulled on. Every piece of the rope feels a tension force in both directions,
except the end point, which feels a tension on one side and a force on the other
side from whatever object is attached to the end.

In some cases, the tension may vary along the rope. (Problem 7, concerning
a hanging rope, is a simple example of this.) In other cases, the tension must
be the same everywhere. For example, in a hanging massless rope, or in a
massless rope hanging over a frictionless pulley, the tension must be the same
at all points, because otherwise there would be a net force on at least one tiny
piece, and then F' = ma would give an infinite acceleration for this tiny piece.

e Normal force:

This is the force perpendicular to a surface that a surface applies to an object.
The total force applied by a surface is usually a combination of the normal
force and the friction force (see below). But for ‘frictionless’ surfaces such as
ice or greasy ones, only the normal force exists. The normal force comes about
because the surface actually compresses a tiny bit and acts like a very rigid
spring; the surface gets squeezed until the restoring force equals the force the
object applies.

REMARK: Technically, the only difference between a ‘normal force’ and a ‘tension’ is
the direction of the force. Both situations can be modeled by a spring. In the case of a
normal force, the spring (a plane, a stick, or whatever) is compressed, and the force on
the given object is directed away from the spring. In the case of a tension, the spring
is stretched, and the force on the given object is directed toward the spring. Things
like sticks can provide both normal forces and tensions. But a rope, for example, has
a hard time providing a normal force. &

e Friction:

Friction is the force parallel to a surface that a surface applies to an object.
Some surfaces, such as sandpaper, have a great deal of friction. Some, such
as greasy ones, have essentially no friction. There are two types of friction,
called ‘kinetic’ friction and ‘static’ friction.

Kinetic friction (which we won’t deal with in this chapter) deals with two
objects moving relative to each other. It is usually a good approximation to
say that the kinetic friction between two objects is proportional to the normal
force between them. We call the constant of proportionality pj (called the
‘coefficient of kinetic friction’), where uj depends on the surfaces involved.
Thus, F' = puiN. The direction of the force is opposite to the motion.
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Static friction deals with two objects at rest relative to each other. In the
static case, all we can say prior to solving a problem is that the static friction
force has a mazimum value equal to Fax = pusN (where pg is the ‘coefficient
of static friction’). In a given problem, it is most likely less than this. For
example, if a block of large mass M sits on a surface with coefficient of friction
ls, and you give the block a tiny push to the right (tiny enough so that it
doesn’t move), then the friction force is of course not usN = ps Mg to the left.
Such a force would send the block sailing off to the left. The true friction force
is simply equal and opposite to the tiny force you apply. What the coefficient
is tells you is that if you apply a force larger than p;Mg (the maximum
friction force), then the block will end up moving to the right.

o Gravity:

Consider two point objects, with masses M and m, separated by a distance
R. Newton’s law for the gravitational force says that the force between these
objects is attractive and has magnitude F = GMm/R?, where G = 6.67 -
107! m3/(kg - s?). As we will show in Chapter 4, the same law applies to
spheres. That is, a sphere may be treated like a point mass located at its
center. Therefore, an object on the surface of the earth feels a gravitational
force equal to

F=m (—) = mg, (1.1)

where M is the mass of the earth, and R is its radius. This equation defines

g. Plugging in the numerical values, we obtain g ~ 9.8 m/s?. Every object

on the surface of the earth feels a force of mg downward. If the object is not
accelerating, then there must also be other forces present (normal forces, etc.) F
to make the total force zero.

0

Example (Block on plane): A horizontal force, F', is applied to a block of mass Figure 1.1
M which rests on a plane inclined at angle 6 (see Fig. 1.1).

(a) Assume that the friction force between the block and plane is large enough to
keep the block still. What are the normal and friction forces (call them N and
F}) the plane exerts on the block?

(b) Let the coefficient of static friction be u. For what range of angles § will the
block remain still?

Solution:

(a) We will break the forces up into components parallel and perpendicular to the
plane (Z and § coordinates would work just as well). The forces are F, Fy, N,
and the weight Mg (see Fig. 1.2). Balancing the forces parallel and perpendic-
ular to the plane gives, respectively (with upward along the plane taken to be
positive),

Figure 1.2

Fy = Mgsinf — F cos0, and
N = Mgcosf+ Fsiné. (1.2)



Figure 1.3
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REMARKS: Note that if F < Mgtan, then Fy is positive; and if FF > Mgtan0,
then Fy is negative. Fy ranges from —F to Mg, as 6 ranges from 0 to 7/2 (these
limiting cases are fairly obvious). For a given F', you can show that N is maximum
when tan§ = F/Mg, at which angle Fy =0 and N = /F2 + M2g%2. &

(b) The coefficient p tells us that |[Fy| < uN. So we have, from eqgs. (1.2),
|Mgsin — F cosf| < u(Mgcosf + Fsin#). (1.3)

The absolute value on the left signifies that we must consider two cases. If
tand > F/Mg, then eq. (1.3) may be rewritten as tan@ < (uMg+ F)/(Mg —
pF). If tand < F /Mg, then we find tan > (F — uMg)/(uF + Mg). Putting
these two ranges for 8 together, we have

— M F
FouMg _ong < P9+ F

. 1.4
uF + Mg Mg — uF (14)

REMARKS: For very small p, these bounds both approach F/Mg. (This makes sense.
If there is little friction, then the components of F' and Mg along the plane must nearly
cancel.) Two special values for y are F/Mg and Mg/F. From eq. (1.4), we see that
these values of p allow 6 to reach 0 and 7/2, respectively. (To see this intuitively: If
6 = 0, then we need F = |Ff| < uN = pMg; so we must have p > F/Mg. If § = /2,
then we need Mg = Fy < pN = pF'; so we must have y > Mg/F.) &

1.2 Balancing torques

In addition to balancing forces in a statics problem, we must also balance torques.
We’ll have much more to say about torques in Chapters 7 and 8, but we’ll need one
important fact here.

Consider the situation in Fig. 1.3, where three forces are applied perpendicularly
to a stick, which is assumed to remain motionless. F; and F5 are the forces at the
ends, and Fj is the force in the interior. (We have, of course, F3 = F; 4+ F», because
the stick is at rest.)

Claim 1.1 If the system is motionless, then Fsa = Fy(a + b). (In other words, the
torques around the left end cancel. And you can show that they cancel around any
other point, too.)

We’ll prove this claim in another way using angular momentum, in Chapter 7, but
let’s give a short proof here.

Proof:  We’ll make one reasonable assumption, that the correct relationship be-
tween the forces and distances is of the form

F3f(a) = Faf (a +b), (1.5)
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where f(z) is a function to be determined.! Applying this assumption with the roles
of ‘left’ and ‘right’ reversed, we have

F3f(b) = F1f(a+D) (1.6)

Adding these two equations, and using F3 = F} + F5, gives

fla) + f(b) = f(a +b). (1.7)

This implies that f(z) is a linear function, f(z) = Az, as was to be shown. (The
constant A cancels out in eq. (1.5).) Another proof of this Claim is given in Problem
12. m

The quantities F3a, Fy(a + b), F3b, etc., are of course just the torques around
various pivot points. Note that dividingeq. (1.5) by eq. (1.6) gives F f(a) = F>f(b),
and hence Fja = F5b, which says that the torques cancel around the point where Fj
is applied. You can easily show that the torques cancel around any arbitrary pivot
point.

When adding up all the torques in a given physical setup, it is of course required
that you use the same pivot point when calculating each torque.

In the case where the forces aren’t perpendicular to the stick, the claim applies
to the components of the forces perpendicular to the stick. (This is fairly obvious.
The components parallel to the stick won’t have any effect on rotating the stick
around the pivot point.) Therefore, referring to the figures shown below, we have

F1a Sinea = FQbSineb. (18)
This equation can be viewed in two ways:

e (F1sinf,)a = (Fasinfy)b. In other words, we effectively have smaller forces
acting on the given ‘lever-arms’. (See Fig. 1.4.)

e Fi(asinf,) = Fy(bsin6) In other words, we effectively have the given forces
acting on smaller ‘lever-arms’. (See Fig. 1.5.)

Claim 1.1 shows that even if you apply a just a tiny force, you can balance the
torque due to a very large force, provided that you make your lever-arm sufficiently
long. This fact led a well-know mathematician of long ago to claim that he could
move the earth if given a long enough lever-arm.

One morning while eating my Wheaties,
I felt the earth move ‘neath my feeties.
The cause for alarm

Was a long lever-arm,

At the end of which stood Archimedes!

!We’re simply assuming linearity in F. That is, two forces of F' applied at a point should be
the same as a force of 2F applied at that point. You can’t really argue with that, but if you insist
on being more rigorous, you could say that the correct relationship is of the form h(F3)f(a) =
h(F2)f(a+b), and then show that h is a linear function. We’ll leave this to you.

asinB, bsing,

Figure 1.5
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One handy fact that is often used is that the torque, due to gravity, on a stick
of mass M is the same as the torque due to a point-mass M located at the center
of the stick. (The truth of this statement relies on the fact that torque is a linear
function of distance to the pivot point.) More generally, the torque on an object
due to gravity may be treated simply as the torque due to a force Mg located at
the center of mass.

Example (Supporting a ladder): A ladder of length L and mass M has its
bottom end attached to the ground by a pivot. It makes an angle  with the horizontal,
and is held up by a person of total length ¢ who is attached to the ground by a pivot
at his feet (see Fig. 1.6). Assume that the person has zero mass, for simplicity. The
person and the ladder are perpendicular to each other. Find the force that the person
applies to the ladder.

Solution: Let F' be the desired force. Note that F' must be directed along the
person (that is, perpendicular to the ladder), because otherwise there would be a net
torque on the person relative to his pivot. This would result in an infinite acceleration
of the (massless) person. (If the person has mass m, you can easily show that he must
apply an additional force of mgsinf/2 down along the ladder.)

Look at torques around the pivot point of the ladder. The gravitational force on the
ladder provides a torque of Mg(L/2)cosf (tending to turn it clockwise). The force
F provides a torque of F'({/tan6) (tending to turn it counterclockwise). Equating
these torques gives

_ MgL

F
20

sin 6. (1.9)

REMARKS: This F goes to zero as § — 0, as it should.?

F grows to the constant MgL/2¢, as 0 increases to m/2 (which isn’t entirely obvious). So
if you ever find yourself lifting up a ladder in the (strange) manner where you keep yourself
perpendicular to it, you will find that you must apply a larger force, the higher the ladder
goes. (However, in the special case where the ladder is exactly vertical, no force is required.
You can see that our above calculations are not valid in this case, because we made a division
by cos @, which is zero when § = 7/2.)

The normal force at the pivot of the person (that is, the vertical component of F', if the
person is massless) is equal to M gLsin 6 cos §/2¢. This has a maximum value of MgL/4¢ at

0=m/4. &

That’s about all there is to statics problems. All you have to do is balance the
forces and torques. To be sure, this sometimes requires a bit of cleverness. For
example, in some problems (like Problem 9) you have to consider infinitesimal little
pieces, and balance the forces on all of these. There are all sorts of tricks to be
picked up by doing problems, so we may as well let you do some . . .

2For § — 0, we need to lengthen the ladder with a massless extension, because the person will
have to be very far to the right if the sticks are to be perpendicular.
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1.3 Problems

Section 1.1: Balancing forces

1.

Hanging mass

A mass m, held up by two strings, hangs from a ceiling (see Fig. 1.7). The
strings form a right angle. In terms of the angle # shown, what is the tension
in each string?

. Pulling the sticks x

Two sticks lie on a horizontal table. One end of each is attached to a wall.
The other ends are joined, and a force F' is applied at this point. The sticks
make angles #; and 6, with the wall, and the force makes an angle 63 with the
wall, as shown in Fig. 1.8. Find the tensions in the sticks.

. Block on a plane

A block sits on a plane inclined at an angle §. Assume that the friction force
is large enough to keep the block still. For what 6 is the horizontal component
of the normal force maximum?

Motionless chain *

A frictionless surface is in the shape of a function which has its endpoints at
the same height but is otherwise arbitrary. A chain of uniform mass per unit
length rests on this surface (from end to end; see Fig. 1.9). Show that the
chain will not move.

. Keeping the book up

A book of mass M is positioned against a vertical wall. The coefficient of
friction between the book and the wall is y. You wish to keep the book from
falling by pushing on it with a force F' applied at an angle 6 to the horizontal
(—7/2 < 0 < 7/2). (See Fig. 1.10.) For a given 6, what is the minimum F
required? What is the limiting value for 6 for which there exists an F' which
will keep the book up?

. Objects between circles x*x

Each of the following planar objects is placed, as shown in Fig. 1.11, between
two frictionless circles of radius R. The mass density of each object is o, and
the radii to the points of contact make an angle § with the horizontal. For
each case, find the horizontal force that must be applied to the circles to keep
them together. For what @ is this force maximum or minimum?

(a) An isosceles triangle with common side length L.
(b) A rectangle with height L.
(c¢) A circle.

Figure 1.7

Figure 1.9
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7. Hanging rope *
0 (a) A rope with length £ and mass density p per unit length is suspended

from one end. Find the tension along the rope.
Figure 1.12

(b) The same rope now lies on a plane inclined at an angle 6 (see Fig. 1.12).
The top end is nailed to the plane. The coefficient of friction is y. What
is the tension at the top of the rope?

(Assume the setup is obtained by initially having the rope lie without

any tension on a horizontal plane, and then tilting the plane up to an
angle 6.)
8. Supporting a disc #x*x
(a) A disc of mass M and radius R is held up by a massless string, as shown
in Fig. 1.13. The surface of the disc is frictionless. What is the tension
in the string? What is the normal force per unit length the string applies

Figure 1.13 to the disc?

(b) Let there now be friction between the disc and the string, with coefficient
1. What is the smallest possible tension in the string at its lowest point?

9. Hanging chain ##x*x*

d (a) A chain of uniform mass density per unit length hangs between two walls.
T Find the shape of the chain. (Except for an arbitrary additive constant,
h the function describing the shape should contain one unknown constant.)
\/ i (b) The unknown constant in your answer depends on the horizontal distance
d between the walls, the vertical distance h between the support points,
and the length £ of the chain (see Fig. 1.14). Find an equation involving
Figure 1.14 these given quantities that determines the unknown constant.

10. Hanging gently *x

A chain hangs between two supports located at the same height, a distance
2d apart (see Fig. 1.15). How long should the chain be in order to minimize
the magnitude of the force on the supports?

\—/ You may use the fact that the height of the hanging chain is of the form
y(z) = (1/a)cosh(az) + a. You will eventually have to solve an equation
L=7

numerically in this problem.

2d

Figure 1.15
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11. Mountain Climber %%

A mountain climber wishes to climb up a frictionless conical mountain. He
wants to do this by throwing a lasso (a rope with a loop) over the top and
climbing up along the rope. (Assume the mountain climber is of negligible
height, so that the rope lies along the mountain; see Fig. 1.16.) At the
bottom of the mountain are two stores. One sells “cheap” lassos (made of a
segment of rope tied to loop of rope of fized length). The other sells “deluxe”
lassos (made of one piece of rope with a loop of wvariable length; the loop’s
length may change without any friction of the rope with itself). See Fig. 1.17.

When viewed from the side, this conical mountain has an angle « at its peak.
For what angles « can the climber climb up along the mountain if he uses:
(a) a “cheap” lasso and loops it once around the top of the mountain?
(b) a “deluxe” lasso and loops it once around the top of the mountain?

(c) a “cheap” lasso and loops it N times around the top of the mountain?
(Assume no friction of the rope with itself.)

(d) a “deluxe” lasso and loops it N times around the top of the mountain?
(Assume no friction of the rope with itself.)

Section 1.2: Balancing torques

12. Equality of torques #x

This problem gives another way to demonstrate Claim 1.1, using an inductive
argument. We’ll get you started, and then you can do the general case.

Consider the situation where forces F' are applied upward at the ends of a
stick of length £, and a force 2F is applied downward at the midpoint (see
Fig. 1.18 ). The stick will not rotate (by symmetry), and it will not translate
(because the net force is zero). We may consider the stick to have a pivot at
the left end, if we wish. If we then erase the force F' on the right end and
replace it with a force 2F at the middle, then the two 2F forces in the middle
will cancel, so the stick will remain still. (There will now be a different force
applied at the pivot, namely zero, but the purpose of the pivot is to simply
apply whatever force is necessary to keep the end still.) Therefore, we see that
a force F' applied at a distance £ from a pivot is ‘equivalent’ to a force 2F
applied at a distance £/2.

Now consider the situation where forces F' are applied upward at the ends, and
forces F' are applied downward at the £/3 and 2//3 marks (see Fig. 1.19 ).
The stick will not rotate (by symmetry), and it will not translate (because the
net force is zero). Consider the stick to have a pivot at the left end. From the
above paragraph, the force F' at 2¢/3 is equivalent to a force 2F at £/3. Making
this replacement, we have the situation shown in Fig. 1.19, with a force 3F
at the £/3 mark. Therefore, we see that a force F' applied at a distance £ is
equivalent to a force 3F applied at a distance £/3.

A

Figure 1.16
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Use induction to show that a force F' applied at a distance £ is equivalent to
a force nF applied at a distance £/n, and then argue why this demonstrates
Claim 1.1.

Leaning sticks *

One stick leans on another as shown in Fig. 1.20. A right angle is formed
where they meet, and the right stick makes an angle § with the horizontal.
The left stick extends infinitesimally beyond the end of the right stick. The
coefficient of friction between the two sticks is y. The sticks have the same
mass density per unit length and are both hinged at the ground. What is the
minimum angle @ for which the sticks do not fall?

Stick on a circle x*

A stick of mass per unit length p rests on a circle of radius R (see Fig. 1.21).
The stick makes an angle 6 with the horizontal. The stick is tangent to the
circle at its upper end. Friction exists at all points of contact in this problem.
Assume that all of these friction forces are large enough to keep the system
still. Find the friction force between the ground and the circle.

Leaning sticks and circles x*x

A large number of sticks (of mass per unit length p) and circles (of radius
R) lean on each other, as shown in Fig. 1.22. Each stick makes an angle 6
with the ground. Each stick is tangent to a circle at its upper end. The sticks
are hinged to the ground, and every other surface is frictionless (unlike in the
previous problem). In the limit of a very large number of sticks and circles,
what is the normal force between a stick and the circle it rests on, very far to
the right? (Assume that the last circle is glued to the floor, to keep it from
moving.)

Find the force x

A stick of mass M is held up by supports at each end. Each support clearly
provides a force of Mg/2. Now put another support somewhere in the middle
(say, at a distance a from one support, and b from the other; see Fig. 1.23).
What forces do the three supports now provide? Can you solve this?

Balancing the stick *x

Given a semi-infinite stick (i.e., one that goes off to infinity in one direction),
find how its density should depend on position so that it has the following
property: If the stick is cut at an arbitrary location, the remaining semi-
infinite piece will balance on a support located a distance b from the end (see
Fig. 1.24).
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18. The spool *x

A spool consists of an axis of radius r and an outside circle of radius R which
rolls on the ground. A thread which is wrapped around the axis is pulled with
a tension T' (see Fig. 1.25).

(a) Given R and r, what angle, 8, should the thread make with the horizontal Figure 1.25
so that the spool does not move. Assume there is large enough friction
between the spool and ground so that the spool doesn’t slip.

(b) Given R, r, and a coefficient of friction p between the spool and ground,
what is the largest 7' can be (assuming the spool doesn’t move)?

(c) Given R and p, what should r be so that the upper bound on T found in
part (b) is as small as possible (assuming the spool doesn’t move)? What
is the resulting value of T'7
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1.4 Solutions

Hanging mass

Balancing the horizontal and vertical force components on the mass gives (see Fig. 1.26)

Tisinf = T5cos0,
Ticos@ +Trsinf = mg. (1.10)
The solution to these equations is
T1 = mgcos¥, and T, = mgsiné. (1.11)

As a double-check, these have the correct limits when § — 0 or § — 7/2.

. Pulling the sticks

Balancing the force components (perpendicular and parallel to the wall, respectively)
at the point where the sticks are joined gives (see Fig. 1.27)

Tisin@, + Tosinfs = F'sinfs,
Tycosfly = Ticosby + Fcosbs. (1.12)

Eliminating Ty gives T1(sin 6 cosfy + cos; sinfy) = F(sin 3 cosfs — cos b3 sinby).
Using the trig addition formulas, this becomes

Fsin(03 — 92)

TN = ——-—"——-".
! SiIl(Hl + 02)

(1.13)

Likewise, we find
_ Fsin(61 + 03)
Ty = S0, 1 05) (1.14)

These quantities have the correct values when 83 = 65 (namely, T) =0 and T» = F),
and when 03 = 7 — 0; (namely, T} = F and Ty = 0). Also, if 83 = 7/2, and
01 + 62 = 7/2, then these answers reduce to those in problem 1, with F' in place of
mg.

Note that if 3 < 65, then T} is negative; i.e., the stick is compressed. And if 63 >
m — 61, then T5 is negative.

Block on a plane

The component of the block’s weight perpendicular to the plane is mgcosf (see
Fig. 1.28). The normal force is therefore N = mgcosf. The horizontal component
of this is mgcosfsinf. To maximize this, we can either take a derivative or we can
write it as (1/2)mgsin 260, from which it is clear that the maximum occurs at § = 7 /4.
(The maximum is mg/2.)

Motionless chain

Let the curve run from x = a to x = b. Consider a little piece of the chain between
z and = + dx (see Fig. 1.29). The length of this piece is /1 + f2 dz. Therefore, its
mass is p/1 + f'2 dx, where p is the mass per unit length. The component of gravity
along the curve is —gf’/+/1+ f'? (with positive taken to be to the right). So the
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total force, F', along the curve is

P [ () b

b
—py/ fdz

—gp(f(a) — (b))
0. (1.15)

5. Keeping the book up

The normal force on the wall is F'cosf. So the friction force holding the book up is
at most pF cosf. The other vertical forces on the book are —Mg and the vertical
component of F'; which is F'sinf. If the book is to stay up, we must have

uF cosf + Fsinf — Mg > 0. (1.16)

So F' must satisfy

Mg

F>——- . 1.17
> pcosf + sin f (1.17)

There is no F that satisfies this if the right-hand-side is infinite. This occurs when

tanf = —pu. (1.18)

So if § is more negative than this, then it is impossible to keep the book up.

6. Objects between circles

(a)

Let N be the normal force. The goal in this problem is to find the horizontal
component of N, which is IV cos#.

The upward force on the triangle from the normal forces is 2N sin § (see Fig. 1.30).

This must equal the weight of the triangle, which is o times the area. Since the
bottom angle of the isosceles triangle is 26, the top side of the triangle has length
2L sinf, and the altitude to that side is Lcosf. So the area of the triangle is
L?sin 6 cosd. The mass is therefore o L? sin § cos §. Equating the weight with the
upward normal force gives N = goL? cos§/2, independent of R. The horizontal
component is therefore
goL? cos? 6
5 .

This is 0 at § = «/2, and it grows as 6 decreases to # = 0 (even though the
triangle is getting smaller). It has the interesting property of approaching the
finite number goL?/2, as 6 — 0.

From Fig. 1.31, the base of the rectangle has length 2R(1 — cos§). The mass
is therefore 02RL(1 — cosf). Equating the weight with the upward normal
force, 2N sin 8, gives N = goLR(1 — cos#)/sinf. The horizontal component is
therefore

N cosf = (1.19)

goLR(1 — cos8) cos @

sin 6 '
This is 0 at both § = 0 and § = /2. Taking the derivative to find where it
reaches a maximum, we find (using sin? § = 1 — cos® ),

N cosf =

(1.20)

cos®f —2cosf +1=0. (1.21)

Figure 1.30

Figure 1.31
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An obvious root of this equation is cosf = 1 (which we know is not the maxi-
mum). Dividing through by the factor (cosf — 1) gives

cos® + cosf —1 = 0. (1.22)

The roots of this are
-1++5
5 .

We must choose the plus sign, since |cosf| < 1. This root is the golden ratio,
cosf ~ 0.618...! The angle 6 is =~ 51.8°.

From Fig. 1.32, the length AB is Rsecf, so the radius of the top circle is
R(sec® —1). The mass is therefore omR?(sec — 1)2. Equating the weight with
the upward normal force, 2N sin 6, gives N = gomR?*(secf — 1)?/2sinf. The
horizontal component is therefore

gomR?cosf (1 ) 2
2 sind \ coséd )

cosf = (1.23)

N cosf = (1.24)

This is 0 at § = 0 (from using cos @ ~ 1—6? /2 for small 6, so 1/ cos ~ 1+6%/2; so
there is an extra 6 in the numerator in the small 0 limit). For § — /2, it behaves
like 1/ cos@, which goes to infinity. (In this limit, N points almost vertically,
but its magnitude is so large that the horizontal component still approaches
infinity.)

7. Hanging rope

(a)

Consider a small piece of the rope between y and y + dy (0 <y < £). The forces
on the piece are T'(y + dy) upward, T(y) downward, and the weight of the piece
(which can be written as pgdy) downward. If the rope is still, then we have
T(y +dy) = T(y) + pgdy. Expanding this to first order in dy gives T'(y) = pg.
The tension in the bottom of the rope is 0, so integrating from y = 0 up to a
position y gives

T(y) = pgy- (1.25)

As a double-check, at the top end we have T'(£) = pgf, which is just the weight
of the whole rope, as it should be.

Of course, one can simply write down the correct answer T'(y) = pgy by de-
manding that the tension at a given point accounts for the weight of all the rope
below it.

Let z be the coordinate along the plane (0 < z < £). Consider a small piece
of the rope between z and z + dz. Balancing the forces on the rope along the
plane gives T(z + dz) + F¢(z)dz = T'(z) + pgsin @ dz, where upward is taken to
be the positive direction for the friction force Fydz (where Fy(z) is the friction
force per unit length). Expanding this to first order in dz gives

T'(z) = pgsinf — Fy(z). (1.26)

The largest the friction force on a small piece can be is uNdz, where N is the
normal force per unit length (namely N = pgcosf). But it may not need to
be this large, depending on 6 and p. Fy will not be so large that it makes the
right-hand-side of eq. (1.26) negative. There are two cases to consider.
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o If pgsind < puN (ie., if tanf < p), then Fy(z) will simply be equal to
pgsin@ (i.e., the friction of each little piece accounts for its weight; so
T'(z) = 0 everywhere, and so T'(z) = 0 everywhere).

o If pgsinf > pN (i.e., if tan@ > p), then Fy(2) = uN = ppgcosf. There-
fore,

T'(z) = pgsin@ — ppg cosb. (1.27)
Using T'(0) = 0, this gives

T(£) = pglsin@ — ppgl cos = pg(yo — pxo), (1.28)

where xg and yo are the width and height of the rope. In the limit zg =0
(i-e., a vertical rope), we get the answer from part (a).

The angle 6y = arctan(u) is the minimum angle of inclination for which there is
any force on the nail at the top end.

8. Supporting a disc

(a) The force down on the disc is Mg, and the force up is 27". These forces must
balance, so
_ My

T
2

(1.29)
We can find the normal force per unit length the string applies to the disc in
two ways.

First method: Let Ndf be the normal force on an arc which subtends an
angle 6. (So N/R is the desired normal force per unit arclength.) The tension
in the string is uniform, so N is a constant, independent of #. The upward
component of this force is Ndf cosf (where 6 is measured from the vertical, i.e.,
—m/2 < 6§ < 7/2). The total upward force must be Mg, so we require

w/2
Ncosfdf = Mg. (1.30)
—m/2

The integral on the left is 2V, so N = M g/2. The normal force per unit length,
N/R,is Mg/2R.

Second method: Consider the normal force, Ndf, on a small arc of the
circle which subtends and angle df. The tension forces on each end of the small
piece of string here almost cancel, but they don’t exactly, due to the fact that

they point in different directions (see Fig. 1.33). Their non-zero sum is what / Tsindo/2
gives the normal force. It’s easy to see that the two forces have a sum equal to sin
2T sin(df/2) (directed radially inward). Since df is small, we may approximate Figure 1.33

this as Ndf = T'df. Hence, N = T. The normal force per unit arclength, N/R,
is therefore T/R. And since T' = Mg/2, this equals Mg/2R.

(b) Let T'(6) be the tension, as a function of 8, for —7/2 < § < 7/2. (T will depend
on @ now, since there is a tangential force from the friction.) Let N(6)df be the
normal force, as a function of 8, on an arc which subtends an angle df. Then
from the second solution above, we have (the existence of friction doesn’t affect
this equality)

T(0) = N(9). (1.31)
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Let Fy(0)df be the friction force that this little piece of string applies to the
disc between 6 and 6 + df. Balancing the forces on this little piece of (massless)
string, we have

T(6+df) =T(0)+ Fr(6)do. (1.32)
(This holds for § > 0. There would be a minus sign in front of Fy for § < 0.

Since the tension is symmetric around 6 = 0, we’ll only bother with the 8 > 0
case.) Writing T(0 + df) ~ T'(8) + T'(0)d6, we find

T'(0) = Fy(6). (1.33)

Since the goal is to find the minimum value for 7'(0), and since we know that
T (mw/2) must be equal to the constant Mg/2 (because the tension in the string
above the disc is Mg/2, from part (a)), we want to look at the case where T"
(which equals FYy) is as large as possible. But by the definition of static friction,
we have Ft(0)df < uN(0)df = pT(6)d6 (where the second equality comes from
eq. (1.31)). Therefore, Fy < uT. So eq. (1.33) becomes

T'(9) < uT(6). (1.34)
Separating variables and integrating from the bottom of the rope up to an angle
6 gives In ((T'(9)/T(0)) < pb. Exponentiating gives

T(6) < T(0)e"’. (1.35)
Letting 6 = 7/2, and noting that T equals M g/2 when § = 7/2, yields M g/2 <
T(0)e*™/2. So we finally have

M
T(0) > Tge*“”/? (1.36)
This minimum value for 7'(0) goes to Mg/2 as p — 0, as it should. And it goes
to zero as p — 00, as it should (imagine a very sticky surface, so that the friction
force from the rope near § = 7/2 accounts for essentially all the weight).

9. Hanging chain

(a) Let the chain be described by the function Y (z). Let the tension in the chain

be described by the function T'(z). Consider a small piece of the chain, with
endpoints having coordinates z and z + dz (see Fig. 1.34). Let the ten-
sion at z pull downward at an angle #; with respect to the horizontal. Let
the tension at x + dz pull upward at an angle 6> with respect to the hori-
zontal. (So cos6y = 1/4/1+ (Y'(2))?, and cosbr = 1/1/1+ (Y'(z + dz))? =~
1/y/1+ (Y'(z) + Y"(z)dz)?.) Balancing the horizontal and vertical forces on
the small piece of chain gives

T(x+dx)cosfy = T(x)cosb,
T(x +dx)sinfy = T(z)sinb; +

gp
cos 6,

da, (1.37)

where p is the mass per unit length. The second term on the right above is
the weight of the small piece, since dz/cos#; is its length. (The second of
these equations is valid only for z on the right side of the minimum, i.e., where
Y'(z) > 0. When Y'(z) < 0, there should be a minus sign in front of the second
term on the right.)

We somehow have to solve these two differential equations for the two unknown
functions, Y (z) and T'(x). (The angles 6, and 62 depend on Y (z)). There are
various ways to do this. Here is one way, broken down into three steps.
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e Squaring and adding egs. (1.37) gives
(T(z + d:c))2 = (T(m))2 + 2T (x)gp tan 8y dz + O(dz?). (1.38)
Writing T'(z + dz) ~ T(z) + T'(z)dz, and using tanf; = Y', we find
(neglecting higher order terms in dz)
T' = gpY’, (1.39)
and so
T(x) = gpY (z) + C. (1.40)

e Now let’s see what we can extract from the first equation in (1.37). Ex-
panding things to first order gives (all the functions are evaluated at z,
which we won’t bother writing, for the sake of neatness)

1 1

T+ T'dx =T . 1.41
( )\/1+(Y’+Y”dx)2 V1+Y”2 (1.41)
Expanding the first square root gives (to first order in dzx)
1 Y'Y"dx 1
T+T 1-— =T—. 1.42
(T +T'do) 1+Y,z( HW) - (1.42)
To first order in dz this yields
TI YIYII
—_ = 14
T 1+4Y”7 (1.43)
Integrating both sides yields
1
InT +c= §ln(1+Y'2), (1.44)
where c¢ is a constant of integration. Exponentiation then gives
VT? =1+Y", (1.45)

where b = e°.

e We may now combine eq. (1.45) with eq. (1.39) to solve for T'. Eliminating
Y’ gives b*T? = 1+ T"?/(gp)?. Solving for T and separating variables
yields

dTr
gp/dw / TP =T (1.46)
(We took the positive square-root because we are looking at x on the right
side, for which 7" > 0.)
The integral on the left is gp(z — a), for some constant a. The integral on
the right equals (1/b) In(bT 4+ vb2T2 — 1). So we find (with a = bgp)

T(z) = % (ea(””’“) + e’a(‘”’“)) = % cosh (a(z — a)). (1.47)

Using eq. (1.40) to find Y, we have
1
Y(z) = o cosh (a(z — a)) + B, (1.48)

where B is some constant (which is rather meaningless; it just depends on
where you choose the y = 0 point). This is valid when Y’(x) > 0, that is,
when z > a. If Y'(z) < 0, then there is a minus sign in the second of egs.
(1.37), but the result turns out to be the same.
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We may eliminate the need for a if we pick the x = 0 point to be at the minimum
of the chain. Then Y'(0) = 0 implies a = 0. So we finally have

Y(z) = écosh(aw) + B. (1.49)

This is the shape of the chain.

The constant a may be determined by the locations of the endpoints and the
length of the chain. If one hangs a chain between two points, then the given
information is (1) the horizontal distance, d, between the two points, (2) the
vertical distance, h, between the two points, and (3) the length, £, of the chain
(see Fig. 1.35). Note that one does not easily know the horizontal distances
between the ends and the minimum point (which we have chosen as the z = 0
point). If h = 0, then these distances are of course d/2; but otherwise, they are
not obvious.

If we let the left endpoint be located at x = —xg, then the right endpoint is at
z = d — xg. We now have two unknowns, g and a. Our two conditions are

Y(d - o) — Y (~20) = h (1.50)

(we take the right end to be higher than the left end, without loss of generality),
and the condition that the length equals ¢, which takes the form (using eq.
(1.49))

d—:co

V1+Y2dx

~
Il

—z0
d—mo

é sinh(az) (1.51)

—x0

If h = 0, the limits are simply +d/2, so we may (numerically) solve for b, using
only this equation, af/2 = sinh(ad/2). If h # 0, one has to (numerically) solve
two equations for two unknowns. Writing out eqs. (1.50) and (1.51) explicitly,
we have

cosh (a(d — mg)) — cosh(—aze) = ah,
sinh (a(d — o)) — sinh(—aze) = al. (1.52)

If we take the difference of the squares of these two equations, and use the
hyperbolic identities cosh? z — sinh®2 = 1 and coshz coshy — sinhzsinhy =
cosh(z — y), we obtain

2 cosh(ad) — 2 = o?(£? — h?), (1.53)

which determines «. (This can be rewritten as 2sinh(ad/2) = av{? — h?, if
desired.)

There are various limits one can check here. If £2 = d? + h? (i.e., the chain
forms a straight line), then we have 2 cosh(ad) — 2 = a%d?; the solution to this
is @ = 0, which does indeed correspond to a straight line. Also, if £ is much
larger than both d and h, then the solution is a very large a, which corresponds
to a ‘droopy’ chain.
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10. Hanging gently
We need to calculate the length of the chain, to get its mass. Then we need to find

the slope at the support, to break the force there into its components.
The slope as a function of z is
y' = a4 (1 cosh(az) + a ) = sinh(ax). (1.54)
dr \ «
The total length is therefore

d
L = / V1+y?dz
—d
d
= /cosh(am)

—d
2
= = sinh(ad). (1.55) cosn(ad)
sinh(ad
The weight of the rope is W = pLg, where p is the mass per unit length. Each support = (ad)
applies a vertical force of W/2. This must equal F'sin @, where F' is the support force,
and @ is the angle it makes with the horizontal. Since tanf = y'(d) = sinh(ad), we 0
have sin § = tanh(ad) (from Fig. 1.36). Therefore, 7 1
- Chain
F - Lt .
2 sind Figure 1.36

pg sinh(ad) 1
a tanh(ad)

- pa—g cosh(ad). (1.56)
Taking the derivative of this (as a function of ), and setting it equal to zero gives
1
tanh(ad) = —. 1.57
anh(ad) = — (1.57)
This must be solved numerically. The result is
ad ~r 1.1997 = 1. (1.58)
The shape of the chain that requires the minimum F' is therefore
d nx
y(z) =~ Ecosh (7) +a. (1.59)
From egs. (1.55) and (1.58), the length is
2d
L= r sinh(n) = (2.52)d. (1.60)
To get an idea of what the chain looks like, we can calculate the ratio of the height,
h, to d.
ho_ oy -y
d d
_ cosh(n) =1
n

~ 0.675. (1.61)
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We can also calculate the angle of the rope at the supports; we find 8 = 56.5°.

REMARK: One can also ask what shape the chain should take in order to minimize the
horizontal or vertical component of F.

The vertical component Fy is just the weight, so we clearly want the shortest possible chain,
namely a horizontal one (which requires an infinite F.) This corresponds to a = 0.

The horizontal component is F, = Fcosf. Since cosf® = 1/cosh(ad), eq. (1.56) gives

F, = pg/a. This goes to zero as a — 0o, which corresponds to a chain of infinite length. &

11. Mountain Climber

(a) We will take advantage of the fact that a cone is ‘flat’; in the sense that you can

make one out of a piece of paper, without crumpling the paper.

Cut the cone along a straight line emanating from the peak and passing through
the knot of the lasso, and roll the cone flat onto a plane. Call the resulting figure,
a sector of a circle, S. (See Fig. 1.37.)

If the cone is very sharp, then S will look like a thin ‘pie piece’. If the cone is
very wide, with a shallow slope, then S will look like a pie with a piece taken
out of it. Points on the straight-line boundaries of the sector S are identified
with each other. Let P be the location of the lasso’s knot. Then P appears on
each straight-line boundary, at equal distances from the tip of S. Let § be the
angle of the sector S.

The key to the problem is realizing that the path of the lasso’s loop must be
a straight line on S, as shown in Fig. 1.37. (The rope will take the shortest
distance between two points since there is no friction, and rolling the cone onto a
plane does not change distances.) Such a straight line between the two identified
points P is possible if and only if the sector S is smaller than a semicircle, i.e.,
B8 < 180°.

Let C denote a cross sectional circle, at a distance d (measured along the cone)
from the top of the mountain, and let u equal the ratio of the circumference of
C to d. Then a semicircular S implies that u = 7. This then implies that the
radius of C' is equal to d/2. Therefore, a/2 = sin™'(1/2). So we find that if the
climber is to be able to climb up along the mountain, then

a < 60°. (1.62)

Having o < 60° guarantees that there is a loop around the cone of shorter length
than the distance straight to the peak and back.

REMARK: When viewed from the side, the rope should appear perpendicular to the
side of the mountain at the point opposite the lasso’s knot. A common mistake is to
assume that this implies a < 90°. This is not the case, because the loop does not lie
in a plane. Lying in a plane, after all, would imply an elliptical loop; but the loop
must certainly have a discontinuous change in slope where the knot is. (For planar,
triangular mountains, the answer to the problem would be o < 90°.) &

Use the same strategy. Roll the cone onto a plane. If the mountain very steep,
the climber’s position can fall by means of the loop growing larger; if the moun-
tain has a shallow slope, the climber’s position can fall by means of the loop
growing smaller. The only situation in which the climber will not fall is the
one where the change in the position of the knot along the mountain is exactly
compensated by the change in length of the loop.
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In terms of the sector S in a plane, the condition is that if we move P a distance
£ up (down) along the mountain, the distance between the identified points P
decreases (increases) by £. We must therefore have 2sin(8/2) = 1. So 8 = 60°,
and hence p (defined in part (a)) is equal to m/3. This corresponds to

a = 2sin 1(1/6) ~ 19°. (1.63)

We see that there is exactly one angle for which the climber can climb up along
the mountain.

REMARK: Another way to see that 8 equals 60° is to note that the three directions of
rope emanating from the knot all have the same tension, since the deluxe lasso is one
continuous piece of rope. Therefore they must have 120° angles between themselves.
This implies that 3 = 60°. &

(c) Roll the cone N times onto a plane, as shown in Fig. 1.38 for N = 4. The
resulting figure Sy is a sector of a circle divided into N equal sectors, each
representing a copy of the cone. Sy must be smaller than a semicircle, so we Figure 1.38
must have u < w/N. Therefore,

a < 2sin~! (%) (1.64)

(d) Roll the cone N times onto a plane. From the reasoning in part (b), we must
have N = 60°. Therefore,

a=2sin~! (GLN) (1.65)

12. Equality of torques *F Ff

The pattern is clear, so let’s prove it by induction. Assume that we have shown that YYvyvyvy
a force F' applied at a distance d is equivalent to a force kF applied at a distance

d/k, for all integers k up to n — 1. We now want to show that the statement holds = \
for k =n.

Consider the situation in Fig. 1.39. Forces F' are applied at the ends of a stick, and i:7

forces 2F/(n — 1) are applied at the j¢/n marks (for 1 < j < n —1). The stick will |

not rotate (by symmetry), and it will not translate (because the net force is zero).

Consider the stick to have a pivot at the left end. Replacing the interior forces by v .

their ‘equivalent’ ones at the £/n mark (see Fig. 1.39) gives a total force there equal Figure 1.39
to

2F 2F (n(n-1)
m(1+2+3+---+(n—1))_n_1(T)_nF. (1.66)
We therefore see that a force F' applied at a distance £ is equivalent to a force nF
applied at a distance £/n, as was to be shown.

It is now clear that the Claim 1.1 holds. To be explicit, consider a tiny distance
€ (small compared to a). Then a force F3 at a distance a is equivalent to a force
Fs(a/e) at a distance e. (Actually, our reasoning above only works if a/e is an integer,
but since a/e is very large, we can just pick the closest integer to it, and there will
be a negligible error.) But a force F3(a/€) at a distance € is equivalent to a force
Fs(a/€)(e/(a+b)) = Fza/(a+b) at a distance (a +b). Since this ‘equivalent’ force at
the distance (a + b) cancels the force F;, there (since the stick is motionless), we have
Fsa/(a+b) = F2, which proves the claim.
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Leaning sticks

Let M; be the mass of the left stick, and let M, be the mass of the right stick. Then
M;/M, = tané (see Fig. 1.40). Let N be the normal force between the sticks, and
let Fy be the friction force between the sticks. (So Fy has a maximum value of pN.)
Balancing the torques on the left stick (around the contact point with the ground)
gives
M

N = ng sin. (1.67)
Balancing the torques on the right stick (around the contact point with the ground)
gives

Fr = @ cosf. (1.68)
The condition Fy < uN becomes
M, cos8 < uMjsiné. (1.69)
Using M;/M, = tan#, this becomes
tan® 6 > % (1.70)

This answer checks in the two extremes: In the limit g = 0, we see that 8 must be
very close to m/2, which makes sense. In the limit y = oo (that is, we have sticky
sticks), we see that 6 can be anything above a very small lower bound, which also
makes sense.

Stick on a circle

Let N be the normal force between the stick and the circle, and let F; be the friction
force between the ground and the circle (see Fig. 1.41). Then we immediately see
that the friction force between the stick and the circle is also Fy (since the torques
from the two friction forces on the circle must cancel).

Looking at torques on the stick, around the point of contact with the ground, we
have Mgcosf(L/2) = NL (since the mass of the stick is effectively all located at its
center, as far as torques are concerned), where M is the mass of the stick and L is
its length. So N = (Mg/2) cosf. Balancing the horizontal forces on the circle gives
Nsinf = Fy + Fy cosf. So we have

Nsinf  Mgsinfcost

Fp=—""_="_"“J__ "~
f 1+ cosé 2 1+ cosf

(1.71)

But M = pL, and from the figure we have L = R/tan(8/2). Using the identity
tan(0/2) = sinf/(1 + cos§), we finally obtain

1
Fy = EpgRCOS(Q. (1.72)

In the limit § — 7/2, Fy approaches 0, which makes sense. In the limit § — 0 (i.e.,
a very long stick), the friction force approaches the constant pgR/2, which isn’t so
obvious.

Leaning sticks and circles
Let s; be the ith stick, and let ¢; be the ith circle.
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16.

The normal forces ¢; feels from s; and from s;y; are equal, because these two forces
provide the only horizontal forces on the frictionless circle, so they must cancel. Let
N; be this normal force.

Look at the torques on s;4+1 (around the hinge on the ground). The torques come from
N;, Niy1, and the weight of s;. From Fig. 1.42, we see that IV; acts at a point which is
a distance Rtan(f/2) away from the hinge. Since the stick has a length R/tan(0/2),
this point is a fraction tan?(§/2) up along the stick. Therefore, balancing the torques
on 8;+1 gives

1 0
ng cos@ + N; tan? 3 = Nis. (1.73)
Ny is by definition 0, so we have N; = (Mg/2)cosf (as in the previous problem).

Successively using eq. (1.73), we see that N equals (Mg/2) cosf(1+tan?(6/2)), and
N3 equals (Mg/2)cosf(1 + tan?(6/2) + tan*(6/2)), and so on. In general,

M 0 0 i—1) 0
N; = Tg cos 6 (1 + tan” 3 + tan* 3 + -+ tan?(—Y) 5) . (1.74)

In the limit ¢ — o0, we may write the infinite sum in closed form as

Mg cosf
lim Nj=Noy = ——— | 1.
im0 2 1-tan?(0/2) (1.75)

(This is the solution to eq. (1.73), with N; = N;41, so if a limit exists, it must be
this.)
Using M = pL = pR/ tan(8/2), we may write N, as
pRg 1 cos @
2 tan(6/2) 1 —tan%(6/2)"

Noo = (1.76)

The identity cos@ = cos?(f/2) — sin®(f/2) may be used to put this in the form

_ pRg cos®(0/2)
Noo = P T (1.77)

This blows up for § — 0, which is obvious (N, approaches half the weight of a stick
in this limit). And it approaches the constant pRg/4 for § — /2, which is not at all
obvious.

Note that the horizontal force that must be applied to the last circle far to the right
is No, sin@ = pRgcos*(6/2). This ranges from pRg at § = 0, to pRg/4 at § = 7 /2.

Find the force

In Fig. 1.43, let the supports at the ends exert forces F; and F5, and let the support
in the interior exert a force F. Then

F1 +F2+F:Mg. (178)

Balancing torques around the left and right ends gives, respectively,

Fa+ Fy(a+b) = Mga;_b,
b
Fb+ Fi(a+b) = Mg2t2. (1.79)

2

Rta\n 6/2
Figure 1.42
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We have used the fact that the mass of the stick can be treated as a point mass at
its center. Note that the equation for balancing the torques around the center-of-
mass is redundant; it is obtained by taking the difference between the two previous
equations. (Balancing torques around the middle pivot also takes the form of a linear
combination of these equations.)

It appears as though we have three equations and three unknowns, but we really have
only two equations, because the sum of egs. (1.79) gives eq. (1.78). So, since we
have two equations and three unknowns, the system is underdetermined. Solving eqs.
(1.79) for F; and F> in terms of F', we see that any forces of the form

2  a+b 2  a+b

M Fb M Fa
(F15F7F2):(—g_ g )

(1.80)

are possible. In retrospect, it is obvious that the forces are not determined. By
changing the height of the new support an infinitesimal distance, one can make F’
be anything from 0 up to Mg(a + b)/2b, which is when the stick comes off the left
support (assuming b > a).

Balancing the stick

Let the stick go off to infinity in the positive = direction. Let it be cut at x = z¢, so
the pivot point is at © = xo + b (see Fig. 1.44). Let the density be p(z). Then the
condition that the torques around zo + b cancel is

zo+b oo
/ p(z)((zo +b) — z)dx = / p(z)(z — (zo +b))dz. (1.81)

0 zo+b

Combining the two integrals gives

I= /oo p(z)((zo + b) — z)dz = 0. (1.82)

0

We want this to equal 0 for all zq, so the derivative of I with respect to ¢ must be 0.
depends on z( through both the limits of integration and the integrand. In taking the
derivative, the former dependence requires finding the value of the integrand at the
limits, while the latter dependence requires taking the derivative of the integrand w.r.t
Zo, and then integrating. We obtain (using the fact that there is zero contribution

from the oo limit)
dI *
0= — = —bp(xo) +/ p(x)dz. (1.83)
d.'EO o

Taking the derivative of this equation with respect to z¢ gives
bp'(z0) = —p(o)- (1.84)
The solution to this is (rewriting the arbitrary zg as x)
p(z) = Ae /b (1.85)

This falls off quickly if b is very small, which makes sense. And it falls off slowly if b
is very large. Note that the density at the pivot is 1/e times the density at the end.
And 1 —1/e = 63% of the mass is contained between the end and the pivot.
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18. The spool

(a)

Let Fy be the friction force the ground provides. Balancing horizontal forces
gives (from Fig. 1.45)
T cosf = Fy. (1.86)

Balancing torques around the center of the circles gives

Tr = FR. (1.87)
These two equations imply
cosf = ;—% (1.88)

The normal force from the ground is
N =Mg—Tsiné. (1.89)

The friction force, eq. (1.86), is F; = T cosf. So the statement Fy < uN
becomes T cosf < u(Mg — T'sin ). Therefore,

pMg

< — 1.
= cosf + pusing’ (1.90)

where 6 is given by eq. (1.88).
The maximum value of T is given in (1.90). This depends on 8, which in turn
depends on r. We want to find the r which minimizes this maximum T .

The 6 which maximizes the denominator in eq. (1.90) is easily found to be given
by tan@ = p. The value of T for this 6 is

pMg

V14 p?

To find the corresponding r, we can use eq. (1.88) to write tané = vV R2 —r2/r.
The equality tan§ = p then yields

T= = Mgsiné. (1.91)

re 2 (1.92)

IRV
This is the r which yields the smallest upper bound on 7'.

REMARKS: In the limit g = 0, we have § =0, T =0, and r = R. In the limit y = oo,
we have 6 = 7/2, T = Mg, and r = 0.

We can also ask the question: What should r be so that the upper bound on T found
in part (b) is as large as possible? We then want to make the denominator in eq. (1.90)
as small as possible. If u < 1, this is achieved at § = 7/2 (with r =0 and T = Mg).
If p > 1, this is achieved at § = 0 (with » = R and T' = pMg). These answers make
sense. &

Figure 1.45
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